Matches in SemOpenAlex for { <https://semopenalex.org/work/W3215690151> ?p ?o ?g. }
- W3215690151 endingPage "353" @default.
- W3215690151 startingPage "345" @default.
- W3215690151 abstract "Numerous microbes inhabit human body, making a vast difference in human health. Hence, discovering associations between microbes and diseases is beneficial to disease prevention and treatment. In this study, we develop a prediction method by learning global graph feature on the heterogeneous network (called HNGFL). Firstly, a heterogeneous network is integrated by known microbe-disease associations and multiple similarities. Based on microbe Gaussian interaction profile (GIP) kernel similarity, we consider different effects of these microbes on organs in the human body to further improve microbe similarity. For disease similarity network, we combine GIP kernel similarity, disease semantic similarity and disease-symptom similarity. And then, an embedding algorithm called GraRep is used to learn global structural information for this network. According to vector feature of every node, we utilize support vector machine classifier to calculate the score for each microbe-disease pair. HNGFL achieves a reliable performance in cross validation, outperforming the compared methods. In addition, we carry out case studies of three diseases. Results show that HNGFL can be considered as a reliable method for microbe-disease association prediction." @default.
- W3215690151 created "2021-12-06" @default.
- W3215690151 creator A5058768577 @default.
- W3215690151 creator A5068003384 @default.
- W3215690151 creator A5069777246 @default.
- W3215690151 date "2022-03-01" @default.
- W3215690151 modified "2023-10-15" @default.
- W3215690151 title "Predicting Microbe‐Disease Association Based on Heterogeneous Network and Global Graph Feature Learning" @default.
- W3215690151 cites W1607743621 @default.
- W3215690151 cites W1988790447 @default.
- W3215690151 cites W2012606594 @default.
- W3215690151 cites W2070771761 @default.
- W3215690151 cites W2088252378 @default.
- W3215690151 cites W2090891622 @default.
- W3215690151 cites W2097885651 @default.
- W3215690151 cites W2106787323 @default.
- W3215690151 cites W2127013413 @default.
- W3215690151 cites W2128769815 @default.
- W3215690151 cites W2131415145 @default.
- W3215690151 cites W2148067809 @default.
- W3215690151 cites W2158822657 @default.
- W3215690151 cites W2163710303 @default.
- W3215690151 cites W2229719906 @default.
- W3215690151 cites W2322763599 @default.
- W3215690151 cites W2332951586 @default.
- W3215690151 cites W2393319904 @default.
- W3215690151 cites W2586217118 @default.
- W3215690151 cites W2616825195 @default.
- W3215690151 cites W2752131265 @default.
- W3215690151 cites W2763922502 @default.
- W3215690151 cites W2765928324 @default.
- W3215690151 cites W2802802305 @default.
- W3215690151 cites W2810107880 @default.
- W3215690151 cites W2894128290 @default.
- W3215690151 cites W2917686621 @default.
- W3215690151 cites W2920433107 @default.
- W3215690151 cites W2938306835 @default.
- W3215690151 cites W2957404091 @default.
- W3215690151 cites W2962756421 @default.
- W3215690151 cites W3015492777 @default.
- W3215690151 cites W3104097132 @default.
- W3215690151 cites W3109152308 @default.
- W3215690151 cites W3110205734 @default.
- W3215690151 cites W3188218913 @default.
- W3215690151 cites W4249977334 @default.
- W3215690151 cites W4376999342 @default.
- W3215690151 doi "https://doi.org/10.1049/cje.2020.00.212" @default.
- W3215690151 hasPublicationYear "2022" @default.
- W3215690151 type Work @default.
- W3215690151 sameAs 3215690151 @default.
- W3215690151 citedByCount "7" @default.
- W3215690151 countsByYear W32156901512022 @default.
- W3215690151 countsByYear W32156901512023 @default.
- W3215690151 crossrefType "journal-article" @default.
- W3215690151 hasAuthorship W3215690151A5058768577 @default.
- W3215690151 hasAuthorship W3215690151A5068003384 @default.
- W3215690151 hasAuthorship W3215690151A5069777246 @default.
- W3215690151 hasBestOaLocation W32156901511 @default.
- W3215690151 hasConcept C100595998 @default.
- W3215690151 hasConcept C103278499 @default.
- W3215690151 hasConcept C114614502 @default.
- W3215690151 hasConcept C115961682 @default.
- W3215690151 hasConcept C119857082 @default.
- W3215690151 hasConcept C121332964 @default.
- W3215690151 hasConcept C122280245 @default.
- W3215690151 hasConcept C12267149 @default.
- W3215690151 hasConcept C130318100 @default.
- W3215690151 hasConcept C132525143 @default.
- W3215690151 hasConcept C138885662 @default.
- W3215690151 hasConcept C142724271 @default.
- W3215690151 hasConcept C153180895 @default.
- W3215690151 hasConcept C154945302 @default.
- W3215690151 hasConcept C160446489 @default.
- W3215690151 hasConcept C163716315 @default.
- W3215690151 hasConcept C2776401178 @default.
- W3215690151 hasConcept C2779134260 @default.
- W3215690151 hasConcept C33923547 @default.
- W3215690151 hasConcept C41008148 @default.
- W3215690151 hasConcept C41608201 @default.
- W3215690151 hasConcept C41895202 @default.
- W3215690151 hasConcept C62520636 @default.
- W3215690151 hasConcept C71924100 @default.
- W3215690151 hasConcept C74193536 @default.
- W3215690151 hasConcept C75564084 @default.
- W3215690151 hasConcept C80444323 @default.
- W3215690151 hasConcept C83665646 @default.
- W3215690151 hasConcept C95623464 @default.
- W3215690151 hasConceptScore W3215690151C100595998 @default.
- W3215690151 hasConceptScore W3215690151C103278499 @default.
- W3215690151 hasConceptScore W3215690151C114614502 @default.
- W3215690151 hasConceptScore W3215690151C115961682 @default.
- W3215690151 hasConceptScore W3215690151C119857082 @default.
- W3215690151 hasConceptScore W3215690151C121332964 @default.
- W3215690151 hasConceptScore W3215690151C122280245 @default.
- W3215690151 hasConceptScore W3215690151C12267149 @default.
- W3215690151 hasConceptScore W3215690151C130318100 @default.
- W3215690151 hasConceptScore W3215690151C132525143 @default.
- W3215690151 hasConceptScore W3215690151C138885662 @default.