Matches in SemOpenAlex for { <https://semopenalex.org/work/W3215690986> ?p ?o ?g. }
- W3215690986 endingPage "157" @default.
- W3215690986 startingPage "138" @default.
- W3215690986 abstract "In this study, we develop a method for multi-task manifold learning. The method aims to improve the performance of manifold learning for multiple tasks, particularly when each task has a small number of samples. Furthermore, the method also aims to generate new samples for new tasks, in addition to new samples for existing tasks. In the proposed method, we use two different types of information transfer: instance transfer and model transfer. For instance transfer, datasets are merged among similar tasks, whereas for model transfer, the manifold models are averaged among similar tasks. For this purpose, the proposed method consists of a set of generative manifold models corresponding to the tasks, which are integrated into a general model of a fiber bundle. We applied the proposed method to artificial datasets and face image sets, and the results showed that the method was able to estimate the manifolds, even for a tiny number of samples." @default.
- W3215690986 created "2021-12-06" @default.
- W3215690986 creator A5036658960 @default.
- W3215690986 creator A5086750113 @default.
- W3215690986 creator A5089151377 @default.
- W3215690986 date "2022-02-01" @default.
- W3215690986 modified "2023-09-25" @default.
- W3215690986 title "Multi-task manifold learning for small sample size datasets" @default.
- W3215690986 cites W130042234 @default.
- W3215690986 cites W1582066090 @default.
- W3215690986 cites W1587882898 @default.
- W3215690986 cites W1966671935 @default.
- W3215690986 cites W1986072350 @default.
- W3215690986 cites W1994507746 @default.
- W3215690986 cites W1999140058 @default.
- W3215690986 cites W2010376469 @default.
- W3215690986 cites W2025064394 @default.
- W3215690986 cites W2036632921 @default.
- W3215690986 cites W2037525266 @default.
- W3215690986 cites W2043941194 @default.
- W3215690986 cites W2051719061 @default.
- W3215690986 cites W2075688085 @default.
- W3215690986 cites W2090239453 @default.
- W3215690986 cites W2093484137 @default.
- W3215690986 cites W2099229603 @default.
- W3215690986 cites W2107636931 @default.
- W3215690986 cites W2111733281 @default.
- W3215690986 cites W2115622455 @default.
- W3215690986 cites W2125798790 @default.
- W3215690986 cites W2131060073 @default.
- W3215690986 cites W2146837144 @default.
- W3215690986 cites W2155298439 @default.
- W3215690986 cites W2519954723 @default.
- W3215690986 cites W2527073320 @default.
- W3215690986 cites W2605639220 @default.
- W3215690986 cites W2624124108 @default.
- W3215690986 cites W2753709519 @default.
- W3215690986 cites W2790702621 @default.
- W3215690986 cites W2913340405 @default.
- W3215690986 cites W3008944207 @default.
- W3215690986 cites W3215598180 @default.
- W3215690986 cites W65738273 @default.
- W3215690986 doi "https://doi.org/10.1016/j.neucom.2021.11.043" @default.
- W3215690986 hasPublicationYear "2022" @default.
- W3215690986 type Work @default.
- W3215690986 sameAs 3215690986 @default.
- W3215690986 citedByCount "3" @default.
- W3215690986 countsByYear W32156909862022 @default.
- W3215690986 countsByYear W32156909862023 @default.
- W3215690986 crossrefType "journal-article" @default.
- W3215690986 hasAuthorship W3215690986A5036658960 @default.
- W3215690986 hasAuthorship W3215690986A5086750113 @default.
- W3215690986 hasAuthorship W3215690986A5089151377 @default.
- W3215690986 hasBestOaLocation W32156909862 @default.
- W3215690986 hasConcept C119857082 @default.
- W3215690986 hasConcept C127413603 @default.
- W3215690986 hasConcept C144024400 @default.
- W3215690986 hasConcept C150899416 @default.
- W3215690986 hasConcept C151876577 @default.
- W3215690986 hasConcept C153120616 @default.
- W3215690986 hasConcept C153180895 @default.
- W3215690986 hasConcept C154945302 @default.
- W3215690986 hasConcept C159985019 @default.
- W3215690986 hasConcept C162324750 @default.
- W3215690986 hasConcept C167966045 @default.
- W3215690986 hasConcept C173608175 @default.
- W3215690986 hasConcept C177264268 @default.
- W3215690986 hasConcept C185592680 @default.
- W3215690986 hasConcept C187736073 @default.
- W3215690986 hasConcept C192562407 @default.
- W3215690986 hasConcept C198531522 @default.
- W3215690986 hasConcept C199360897 @default.
- W3215690986 hasConcept C2776175482 @default.
- W3215690986 hasConcept C2778134712 @default.
- W3215690986 hasConcept C2779304628 @default.
- W3215690986 hasConcept C2780451532 @default.
- W3215690986 hasConcept C36289849 @default.
- W3215690986 hasConcept C39890363 @default.
- W3215690986 hasConcept C41008148 @default.
- W3215690986 hasConcept C43617362 @default.
- W3215690986 hasConcept C529865628 @default.
- W3215690986 hasConcept C70518039 @default.
- W3215690986 hasConcept C78519656 @default.
- W3215690986 hasConceptScore W3215690986C119857082 @default.
- W3215690986 hasConceptScore W3215690986C127413603 @default.
- W3215690986 hasConceptScore W3215690986C144024400 @default.
- W3215690986 hasConceptScore W3215690986C150899416 @default.
- W3215690986 hasConceptScore W3215690986C151876577 @default.
- W3215690986 hasConceptScore W3215690986C153120616 @default.
- W3215690986 hasConceptScore W3215690986C153180895 @default.
- W3215690986 hasConceptScore W3215690986C154945302 @default.
- W3215690986 hasConceptScore W3215690986C159985019 @default.
- W3215690986 hasConceptScore W3215690986C162324750 @default.
- W3215690986 hasConceptScore W3215690986C167966045 @default.
- W3215690986 hasConceptScore W3215690986C173608175 @default.
- W3215690986 hasConceptScore W3215690986C177264268 @default.
- W3215690986 hasConceptScore W3215690986C185592680 @default.
- W3215690986 hasConceptScore W3215690986C187736073 @default.