Matches in SemOpenAlex for { <https://semopenalex.org/work/W3215694718> ?p ?o ?g. }
- W3215694718 endingPage "12647" @default.
- W3215694718 startingPage "12633" @default.
- W3215694718 abstract "Object detection in traffic scenes has attracted considerable attention from both academia and industry recently. Modern detectors achieve excellent performance under a simple constrained environment while performing poorly under the actual complex and open traffic environment. Therefore, the capability of adapting to new and unseen domains is a key factor for the large-scale application and proliferation of detectors in autonomous driving. To this end, this paper proposes a novel category-induced coarse-to-fine domain adaptation approach (C2FDA) for cross-domain object detection, which consists of three pivotal components: (1) Attention-induced coarse-grained alignment module (ACGA), which strengthens the distribution alignment across disparate domains within the foreground features in category-agnostic way by the minimax optimization between the domain classifier and the backbone feature extractor; (2) Attention-induced feature selection module, which assists the model to emphasize the crucial foreground features and enables the ACGA to focus on the relevant and discriminative foreground features, without being affected by the distribution of inconsequential background features; (3) Category-induced fine-grained alignment module (CFGA), which reduces the domain shift in category-aware way by minimizing the distance of centroids with the same category from different domains and maximizing that of centroids with disparate categories. We evaluate the performance of our approach in various source/target domain pairs and comprehensive results demonstrate that C2FDA significantly outperforms the state-of-the-art on multiple domain adaptation scenarios, i.e., the synthetic-to-real adaptation, the weather adaptation, and the cross camera adaptation." @default.
- W3215694718 created "2021-12-06" @default.
- W3215694718 creator A5020028197 @default.
- W3215694718 creator A5047612561 @default.
- W3215694718 creator A5047834526 @default.
- W3215694718 creator A5083438052 @default.
- W3215694718 date "2022-08-01" @default.
- W3215694718 modified "2023-10-14" @default.
- W3215694718 title "C2FDA: Coarse-to-Fine Domain Adaptation for Traffic Object Detection" @default.
- W3215694718 cites W1536680647 @default.
- W3215694718 cites W2031489346 @default.
- W3215694718 cites W2102605133 @default.
- W3215694718 cites W2104094955 @default.
- W3215694718 cites W2117539524 @default.
- W3215694718 cites W2149249197 @default.
- W3215694718 cites W2150066425 @default.
- W3215694718 cites W2164943005 @default.
- W3215694718 cites W2194775991 @default.
- W3215694718 cites W2288122362 @default.
- W3215694718 cites W2340897893 @default.
- W3215694718 cites W2490270993 @default.
- W3215694718 cites W2520951797 @default.
- W3215694718 cites W2565639579 @default.
- W3215694718 cites W2593768305 @default.
- W3215694718 cites W2605488490 @default.
- W3215694718 cites W2738419683 @default.
- W3215694718 cites W2748021867 @default.
- W3215694718 cites W2770645414 @default.
- W3215694718 cites W2807183728 @default.
- W3215694718 cites W2883358774 @default.
- W3215694718 cites W2884367402 @default.
- W3215694718 cites W2886047306 @default.
- W3215694718 cites W2923088732 @default.
- W3215694718 cites W2954628187 @default.
- W3215694718 cites W2955889502 @default.
- W3215694718 cites W2962823940 @default.
- W3215694718 cites W2962992847 @default.
- W3215694718 cites W2963037989 @default.
- W3215694718 cites W2964115968 @default.
- W3215694718 cites W2964241181 @default.
- W3215694718 cites W2964285681 @default.
- W3215694718 cites W2968634921 @default.
- W3215694718 cites W2969583814 @default.
- W3215694718 cites W2971396040 @default.
- W3215694718 cites W2978573218 @default.
- W3215694718 cites W2979548969 @default.
- W3215694718 cites W2981577079 @default.
- W3215694718 cites W2990069979 @default.
- W3215694718 cites W2990740643 @default.
- W3215694718 cites W2997207016 @default.
- W3215694718 cites W2997310315 @default.
- W3215694718 cites W3010381534 @default.
- W3215694718 cites W3010456692 @default.
- W3215694718 cites W3021431680 @default.
- W3215694718 cites W3034591020 @default.
- W3215694718 cites W3034779842 @default.
- W3215694718 cites W3034937575 @default.
- W3215694718 cites W3035673985 @default.
- W3215694718 cites W3129242782 @default.
- W3215694718 cites W3176895448 @default.
- W3215694718 cites W3180426564 @default.
- W3215694718 doi "https://doi.org/10.1109/tits.2021.3115823" @default.
- W3215694718 hasPublicationYear "2022" @default.
- W3215694718 type Work @default.
- W3215694718 sameAs 3215694718 @default.
- W3215694718 citedByCount "37" @default.
- W3215694718 countsByYear W32156947182022 @default.
- W3215694718 countsByYear W32156947182023 @default.
- W3215694718 crossrefType "journal-article" @default.
- W3215694718 hasAuthorship W3215694718A5020028197 @default.
- W3215694718 hasAuthorship W3215694718A5047612561 @default.
- W3215694718 hasAuthorship W3215694718A5047834526 @default.
- W3215694718 hasAuthorship W3215694718A5083438052 @default.
- W3215694718 hasConcept C117978034 @default.
- W3215694718 hasConcept C119857082 @default.
- W3215694718 hasConcept C120665830 @default.
- W3215694718 hasConcept C121332964 @default.
- W3215694718 hasConcept C127413603 @default.
- W3215694718 hasConcept C134306372 @default.
- W3215694718 hasConcept C139807058 @default.
- W3215694718 hasConcept C146599234 @default.
- W3215694718 hasConcept C153180895 @default.
- W3215694718 hasConcept C154945302 @default.
- W3215694718 hasConcept C21880701 @default.
- W3215694718 hasConcept C2776151529 @default.
- W3215694718 hasConcept C2776434776 @default.
- W3215694718 hasConcept C31972630 @default.
- W3215694718 hasConcept C33923547 @default.
- W3215694718 hasConcept C36503486 @default.
- W3215694718 hasConcept C41008148 @default.
- W3215694718 hasConcept C95623464 @default.
- W3215694718 hasConcept C97931131 @default.
- W3215694718 hasConceptScore W3215694718C117978034 @default.
- W3215694718 hasConceptScore W3215694718C119857082 @default.
- W3215694718 hasConceptScore W3215694718C120665830 @default.
- W3215694718 hasConceptScore W3215694718C121332964 @default.
- W3215694718 hasConceptScore W3215694718C127413603 @default.
- W3215694718 hasConceptScore W3215694718C134306372 @default.