Matches in SemOpenAlex for { <https://semopenalex.org/work/W3215694762> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W3215694762 abstract "Existing data-driven machinery fault diagnosis methods can obtain high diagnosis accuracy under the condition of abundant labeled data. However, in the actual industrial environment, complete and high-quality training data may often be distributed on multiple mechanical equipment of different regions or institutions, so-called an isolated data island problem. It is often difficult to integrate and utilize these datasets due to limitation of legal regulations or interest conflict, such as privacy protection, security risk and industry competition. Therefore, how to effectively use the separated data of multiple participants to jointly train a reliable intelligent fault diagnosis model is an urgent challenge. To address this problem, a federated transfer learning method based on averaging shared layers for bearing fault diagnosis is proposed in this study. A server-clients architecture with multiple deep transfer networks is constructed to jointly learn the global features from isolated datasets. Then, a modified federated averaging method based on shared layers is adopted to implement federated averaging of distributed feature layers from different diagnosis models, and personalized layers are updated locally. Three different bearing datasets collected by different devices are used for experimental verification. Compared with the current popular federated learning schemes, the experiment results demonstrate the effectiveness and superiority of the proposed method." @default.
- W3215694762 created "2021-12-06" @default.
- W3215694762 creator A5003913508 @default.
- W3215694762 creator A5036048287 @default.
- W3215694762 creator A5046455935 @default.
- W3215694762 creator A5052022256 @default.
- W3215694762 creator A5082242637 @default.
- W3215694762 date "2021-10-15" @default.
- W3215694762 modified "2023-10-12" @default.
- W3215694762 title "Federated Transfer Learning for Bearing Fault Diagnosis Based on Averaging Shared Layers" @default.
- W3215694762 cites W2584994008 @default.
- W3215694762 cites W2804879845 @default.
- W3215694762 cites W2912213068 @default.
- W3215694762 cites W2947583263 @default.
- W3215694762 cites W2962834937 @default.
- W3215694762 cites W3107076389 @default.
- W3215694762 cites W3115710758 @default.
- W3215694762 cites W3128108456 @default.
- W3215694762 cites W3128524777 @default.
- W3215694762 cites W3138513656 @default.
- W3215694762 doi "https://doi.org/10.1109/phm-nanjing52125.2021.9612761" @default.
- W3215694762 hasPublicationYear "2021" @default.
- W3215694762 type Work @default.
- W3215694762 sameAs 3215694762 @default.
- W3215694762 citedByCount "7" @default.
- W3215694762 countsByYear W32156947622022 @default.
- W3215694762 countsByYear W32156947622023 @default.
- W3215694762 crossrefType "proceedings-article" @default.
- W3215694762 hasAuthorship W3215694762A5003913508 @default.
- W3215694762 hasAuthorship W3215694762A5036048287 @default.
- W3215694762 hasAuthorship W3215694762A5046455935 @default.
- W3215694762 hasAuthorship W3215694762A5052022256 @default.
- W3215694762 hasAuthorship W3215694762A5082242637 @default.
- W3215694762 hasConcept C108583219 @default.
- W3215694762 hasConcept C119857082 @default.
- W3215694762 hasConcept C120314980 @default.
- W3215694762 hasConcept C124101348 @default.
- W3215694762 hasConcept C127313418 @default.
- W3215694762 hasConcept C138885662 @default.
- W3215694762 hasConcept C150899416 @default.
- W3215694762 hasConcept C154945302 @default.
- W3215694762 hasConcept C165205528 @default.
- W3215694762 hasConcept C175551986 @default.
- W3215694762 hasConcept C199978012 @default.
- W3215694762 hasConcept C2776401178 @default.
- W3215694762 hasConcept C2992525071 @default.
- W3215694762 hasConcept C41008148 @default.
- W3215694762 hasConcept C41895202 @default.
- W3215694762 hasConceptScore W3215694762C108583219 @default.
- W3215694762 hasConceptScore W3215694762C119857082 @default.
- W3215694762 hasConceptScore W3215694762C120314980 @default.
- W3215694762 hasConceptScore W3215694762C124101348 @default.
- W3215694762 hasConceptScore W3215694762C127313418 @default.
- W3215694762 hasConceptScore W3215694762C138885662 @default.
- W3215694762 hasConceptScore W3215694762C150899416 @default.
- W3215694762 hasConceptScore W3215694762C154945302 @default.
- W3215694762 hasConceptScore W3215694762C165205528 @default.
- W3215694762 hasConceptScore W3215694762C175551986 @default.
- W3215694762 hasConceptScore W3215694762C199978012 @default.
- W3215694762 hasConceptScore W3215694762C2776401178 @default.
- W3215694762 hasConceptScore W3215694762C2992525071 @default.
- W3215694762 hasConceptScore W3215694762C41008148 @default.
- W3215694762 hasConceptScore W3215694762C41895202 @default.
- W3215694762 hasFunder F4320321001 @default.
- W3215694762 hasLocation W32156947621 @default.
- W3215694762 hasOpenAccess W3215694762 @default.
- W3215694762 hasPrimaryLocation W32156947621 @default.
- W3215694762 hasRelatedWork W2065631063 @default.
- W3215694762 hasRelatedWork W2575656761 @default.
- W3215694762 hasRelatedWork W2951211570 @default.
- W3215694762 hasRelatedWork W3023427754 @default.
- W3215694762 hasRelatedWork W3131673289 @default.
- W3215694762 hasRelatedWork W3167935049 @default.
- W3215694762 hasRelatedWork W3192840557 @default.
- W3215694762 hasRelatedWork W4206357785 @default.
- W3215694762 hasRelatedWork W4281381188 @default.
- W3215694762 hasRelatedWork W4375928479 @default.
- W3215694762 isParatext "false" @default.
- W3215694762 isRetracted "false" @default.
- W3215694762 magId "3215694762" @default.
- W3215694762 workType "article" @default.