Matches in SemOpenAlex for { <https://semopenalex.org/work/W3215698815> ?p ?o ?g. }
- W3215698815 endingPage "e2045" @default.
- W3215698815 startingPage "e2033" @default.
- W3215698815 abstract "To develop and internally validate a machine-learning algorithm to reliably predict cost after anterior cruciate ligament reconstruction (ACLR).A retrospective review of the New York State Ambulatory Surgery and Services database was performed to identify patients who underwent elective ACLR from 2015 to 2016. Features included in initial models consisted of patient characteristics (age, sex, insurance status, income, medical comorbidities as classified by the Clinical Classifications Software diagnosis code) as well as intraoperative variables (type of anesthesia and procedure-specific factors). Models were generated to predict total charges using 4 algorithms: random forest, extreme gradient boost, elastic net penalized regression, and support vector machines with radial kernels. Training was performed with 10-fold cross-validation followed by internal validation via 0.632 bootstrapping. Model discriminative performance was assessed by area under the receiver operating characteristic curve, calibration, and the Brier score. Decision curve analysis was performed to demonstrate the net benefit of using the final model in practice.In total, 7,311 patients undergoing ambulatory ACLR were included. The random forest model demonstrated the best performance assessed via internal validation (area under the curve = 0.85), calibration, and the Brier score (0.208). Cost incurred was influenced by anesthesia type, operating room time, and number of chronic comorbidities. Decision curve analysis revealed a net benefit for use of the random forest model and the model was integrated into a web-based open-access application.The random forest model predicted cost after ambulatory ACLR using a large, statewide database with good performance. The top variables found to predict increased charges were general anesthesia, operating room time, meniscal repair, self-pay insurance, patient neighborhood characteristics, and number of chronic conditions.III, retrospective cohort study." @default.
- W3215698815 created "2021-12-06" @default.
- W3215698815 creator A5005420475 @default.
- W3215698815 creator A5028151627 @default.
- W3215698815 creator A5042401335 @default.
- W3215698815 creator A5056378102 @default.
- W3215698815 creator A5068077010 @default.
- W3215698815 creator A5084967312 @default.
- W3215698815 creator A5088641088 @default.
- W3215698815 date "2021-12-01" @default.
- W3215698815 modified "2023-10-17" @default.
- W3215698815 title "Artificial Intelligence Predicts Cost After Ambulatory Anterior Cruciate Ligament Reconstruction" @default.
- W3215698815 cites W2064186732 @default.
- W3215698815 cites W2065974896 @default.
- W3215698815 cites W2070728300 @default.
- W3215698815 cites W2087046046 @default.
- W3215698815 cites W2087358165 @default.
- W3215698815 cites W2098026442 @default.
- W3215698815 cites W2136085913 @default.
- W3215698815 cites W2151423652 @default.
- W3215698815 cites W2255310938 @default.
- W3215698815 cites W2562251009 @default.
- W3215698815 cites W2605441139 @default.
- W3215698815 cites W2607507174 @default.
- W3215698815 cites W2746030716 @default.
- W3215698815 cites W2889913746 @default.
- W3215698815 cites W2891385203 @default.
- W3215698815 cites W2904561288 @default.
- W3215698815 cites W2908031828 @default.
- W3215698815 cites W2908035099 @default.
- W3215698815 cites W2914645148 @default.
- W3215698815 cites W2940611184 @default.
- W3215698815 cites W2948399002 @default.
- W3215698815 cites W2952738914 @default.
- W3215698815 cites W2964038393 @default.
- W3215698815 cites W2966709613 @default.
- W3215698815 cites W2977262858 @default.
- W3215698815 cites W2980665503 @default.
- W3215698815 cites W2998718550 @default.
- W3215698815 cites W3001077607 @default.
- W3215698815 cites W3034840568 @default.
- W3215698815 doi "https://doi.org/10.1016/j.asmr.2021.10.013" @default.
- W3215698815 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34977663" @default.
- W3215698815 hasPublicationYear "2021" @default.
- W3215698815 type Work @default.
- W3215698815 sameAs 3215698815 @default.
- W3215698815 citedByCount "3" @default.
- W3215698815 countsByYear W32156988152022 @default.
- W3215698815 countsByYear W32156988152023 @default.
- W3215698815 crossrefType "journal-article" @default.
- W3215698815 hasAuthorship W3215698815A5005420475 @default.
- W3215698815 hasAuthorship W3215698815A5028151627 @default.
- W3215698815 hasAuthorship W3215698815A5042401335 @default.
- W3215698815 hasAuthorship W3215698815A5056378102 @default.
- W3215698815 hasAuthorship W3215698815A5068077010 @default.
- W3215698815 hasAuthorship W3215698815A5084967312 @default.
- W3215698815 hasAuthorship W3215698815A5088641088 @default.
- W3215698815 hasBestOaLocation W32156988153 @default.
- W3215698815 hasConcept C105795698 @default.
- W3215698815 hasConcept C119857082 @default.
- W3215698815 hasConcept C12267149 @default.
- W3215698815 hasConcept C141071460 @default.
- W3215698815 hasConcept C154945302 @default.
- W3215698815 hasConcept C169258074 @default.
- W3215698815 hasConcept C2778434673 @default.
- W3215698815 hasConcept C2780887989 @default.
- W3215698815 hasConcept C33923547 @default.
- W3215698815 hasConcept C35405484 @default.
- W3215698815 hasConcept C35785553 @default.
- W3215698815 hasConcept C41008148 @default.
- W3215698815 hasConcept C58471807 @default.
- W3215698815 hasConcept C71924100 @default.
- W3215698815 hasConcept C97931131 @default.
- W3215698815 hasConceptScore W3215698815C105795698 @default.
- W3215698815 hasConceptScore W3215698815C119857082 @default.
- W3215698815 hasConceptScore W3215698815C12267149 @default.
- W3215698815 hasConceptScore W3215698815C141071460 @default.
- W3215698815 hasConceptScore W3215698815C154945302 @default.
- W3215698815 hasConceptScore W3215698815C169258074 @default.
- W3215698815 hasConceptScore W3215698815C2778434673 @default.
- W3215698815 hasConceptScore W3215698815C2780887989 @default.
- W3215698815 hasConceptScore W3215698815C33923547 @default.
- W3215698815 hasConceptScore W3215698815C35405484 @default.
- W3215698815 hasConceptScore W3215698815C35785553 @default.
- W3215698815 hasConceptScore W3215698815C41008148 @default.
- W3215698815 hasConceptScore W3215698815C58471807 @default.
- W3215698815 hasConceptScore W3215698815C71924100 @default.
- W3215698815 hasConceptScore W3215698815C97931131 @default.
- W3215698815 hasIssue "6" @default.
- W3215698815 hasLocation W32156988151 @default.
- W3215698815 hasLocation W32156988152 @default.
- W3215698815 hasLocation W32156988153 @default.
- W3215698815 hasLocation W32156988154 @default.
- W3215698815 hasOpenAccess W3215698815 @default.
- W3215698815 hasPrimaryLocation W32156988151 @default.
- W3215698815 hasRelatedWork W2979979539 @default.
- W3215698815 hasRelatedWork W3004897296 @default.
- W3215698815 hasRelatedWork W3087105065 @default.