Matches in SemOpenAlex for { <https://semopenalex.org/work/W3215707958> ?p ?o ?g. }
- W3215707958 endingPage "106" @default.
- W3215707958 startingPage "93" @default.
- W3215707958 abstract "Nowcasts of strong convective precipitation and radar-based quantitative precipitation estimations have always been hot yet challenging issues in meteorological sciences. Data-driven machine learning, especially deep learning, provides a new technical approach for the quantitative estimation and forecasting of precipitation. A high-quality, large-sample, and labeled training dataset is critical for the successful application of machine-learning technology to a specific field. The present study develops a benchmark dataset that can be applied to machine learning for minute-scale quantitative precipitation estimation and forecasting (QpefBD), containing 231,978 samples of 3185 heavy precipitation events that occurred in 6 provinces of central and eastern China from April to October 2016–2018. Each individual sample consists of 8 products of weather radars at 6-min intervals within the time window of the corresponding event and products of 27 physical quantities at hourly intervals that describe the atmospheric dynamic and thermodynamic conditions. Two data labels, i.e., ground precipitation intensity and areal coverage of heavy precipitation at 6-min intervals, are also included. The present study describes the basic components of the dataset and data processing and provides metrics for the evaluation of model performance on precipitation estimation and forecasting. Based on these evaluation metrics, some simple and commonly used methods are applied to evaluate precipitation estimates and forecasts. The results can serve as the benchmark reference for the performance evaluation of machine learning models using this dataset. This paper also gives some suggestions and scenarios of the QpefBD application. We believe that the application of this benchmark dataset will promote interdisciplinary collaboration between meteorological sciences and artificial intelligence sciences, providing a new way for the identification and forecast of heavy precipitation." @default.
- W3215707958 created "2021-12-06" @default.
- W3215707958 creator A5044407900 @default.
- W3215707958 creator A5045545412 @default.
- W3215707958 creator A5047721072 @default.
- W3215707958 creator A5063306379 @default.
- W3215707958 creator A5065630802 @default.
- W3215707958 creator A5079358041 @default.
- W3215707958 creator A5085698884 @default.
- W3215707958 creator A5089639576 @default.
- W3215707958 date "2022-02-01" @default.
- W3215707958 modified "2023-09-27" @default.
- W3215707958 title "QpefBD: A Benchmark Dataset Applied to Machine Learning for Minute-Scale Quantitative Precipitation Estimation and Forecasting" @default.
- W3215707958 cites W1046929179 @default.
- W3215707958 cites W1605709117 @default.
- W3215707958 cites W1866709352 @default.
- W3215707958 cites W1992363940 @default.
- W3215707958 cites W2016184960 @default.
- W3215707958 cites W2024414272 @default.
- W3215707958 cites W2031580446 @default.
- W3215707958 cites W2060430093 @default.
- W3215707958 cites W2117539524 @default.
- W3215707958 cites W2127016675 @default.
- W3215707958 cites W2139038373 @default.
- W3215707958 cites W2174733467 @default.
- W3215707958 cites W2175461096 @default.
- W3215707958 cites W2580528732 @default.
- W3215707958 cites W2743153755 @default.
- W3215707958 cites W2770594110 @default.
- W3215707958 cites W2913323966 @default.
- W3215707958 cites W2963511153 @default.
- W3215707958 cites W2972792628 @default.
- W3215707958 cites W2985739459 @default.
- W3215707958 cites W3016097621 @default.
- W3215707958 cites W3016496098 @default.
- W3215707958 cites W3025949386 @default.
- W3215707958 cites W3046852353 @default.
- W3215707958 cites W3080366021 @default.
- W3215707958 cites W3122092312 @default.
- W3215707958 doi "https://doi.org/10.1007/s13351-022-1140-4" @default.
- W3215707958 hasPublicationYear "2022" @default.
- W3215707958 type Work @default.
- W3215707958 sameAs 3215707958 @default.
- W3215707958 citedByCount "4" @default.
- W3215707958 countsByYear W32157079582022 @default.
- W3215707958 countsByYear W32157079582023 @default.
- W3215707958 crossrefType "journal-article" @default.
- W3215707958 hasAuthorship W3215707958A5044407900 @default.
- W3215707958 hasAuthorship W3215707958A5045545412 @default.
- W3215707958 hasAuthorship W3215707958A5047721072 @default.
- W3215707958 hasAuthorship W3215707958A5063306379 @default.
- W3215707958 hasAuthorship W3215707958A5065630802 @default.
- W3215707958 hasAuthorship W3215707958A5079358041 @default.
- W3215707958 hasAuthorship W3215707958A5085698884 @default.
- W3215707958 hasAuthorship W3215707958A5089639576 @default.
- W3215707958 hasBestOaLocation W32157079582 @default.
- W3215707958 hasConcept C107054158 @default.
- W3215707958 hasConcept C119857082 @default.
- W3215707958 hasConcept C124101348 @default.
- W3215707958 hasConcept C127413603 @default.
- W3215707958 hasConcept C13280743 @default.
- W3215707958 hasConcept C140178040 @default.
- W3215707958 hasConcept C153294291 @default.
- W3215707958 hasConcept C154945302 @default.
- W3215707958 hasConcept C185592680 @default.
- W3215707958 hasConcept C185798385 @default.
- W3215707958 hasConcept C198531522 @default.
- W3215707958 hasConcept C201995342 @default.
- W3215707958 hasConcept C205649164 @default.
- W3215707958 hasConcept C2778755073 @default.
- W3215707958 hasConcept C39432304 @default.
- W3215707958 hasConcept C41008148 @default.
- W3215707958 hasConcept C43617362 @default.
- W3215707958 hasConcept C554190296 @default.
- W3215707958 hasConcept C58640448 @default.
- W3215707958 hasConcept C75398719 @default.
- W3215707958 hasConcept C76155785 @default.
- W3215707958 hasConcept C96250715 @default.
- W3215707958 hasConceptScore W3215707958C107054158 @default.
- W3215707958 hasConceptScore W3215707958C119857082 @default.
- W3215707958 hasConceptScore W3215707958C124101348 @default.
- W3215707958 hasConceptScore W3215707958C127413603 @default.
- W3215707958 hasConceptScore W3215707958C13280743 @default.
- W3215707958 hasConceptScore W3215707958C140178040 @default.
- W3215707958 hasConceptScore W3215707958C153294291 @default.
- W3215707958 hasConceptScore W3215707958C154945302 @default.
- W3215707958 hasConceptScore W3215707958C185592680 @default.
- W3215707958 hasConceptScore W3215707958C185798385 @default.
- W3215707958 hasConceptScore W3215707958C198531522 @default.
- W3215707958 hasConceptScore W3215707958C201995342 @default.
- W3215707958 hasConceptScore W3215707958C205649164 @default.
- W3215707958 hasConceptScore W3215707958C2778755073 @default.
- W3215707958 hasConceptScore W3215707958C39432304 @default.
- W3215707958 hasConceptScore W3215707958C41008148 @default.
- W3215707958 hasConceptScore W3215707958C43617362 @default.
- W3215707958 hasConceptScore W3215707958C554190296 @default.
- W3215707958 hasConceptScore W3215707958C58640448 @default.
- W3215707958 hasConceptScore W3215707958C75398719 @default.