Matches in SemOpenAlex for { <https://semopenalex.org/work/W3215708800> ?p ?o ?g. }
- W3215708800 abstract "With the advancement of wind power generation technology, wind power plays an increasing role in modern power grids. To properly consider wind power for power systems planning and operation purpose, wind power and wind speed must be forecasted accurately. Wind is chaotic, random, irregular, and non-stationary in nature, which creates significant challenges in wind speed forecasting. This paper aims to forecast wind speed using both the statistical time series analysis method (autoregressive moving average (ARMA)) and neural network methods (feedforward neural network (FNN), recurrent neural network (RNN), long short-term memory (LSTM), and the gated recurrent unit (GRU)). The performance of the proposed five models is compared with the measured wind speed data, and the GRU model shows the best performance with the highest prediction accuracy. The four ANN models outperform the ARMA model." @default.
- W3215708800 created "2021-12-06" @default.
- W3215708800 creator A5006162983 @default.
- W3215708800 creator A5055738584 @default.
- W3215708800 creator A5063637646 @default.
- W3215708800 creator A5080299409 @default.
- W3215708800 creator A5083554304 @default.
- W3215708800 date "2021-10-22" @default.
- W3215708800 modified "2023-09-25" @default.
- W3215708800 title "Wind Speed Forecasting Using ARMA and Neural Network Models" @default.
- W3215708800 cites W2064675550 @default.
- W3215708800 cites W2078667481 @default.
- W3215708800 cites W2157331557 @default.
- W3215708800 cites W2162331448 @default.
- W3215708800 cites W2544046091 @default.
- W3215708800 cites W2729912483 @default.
- W3215708800 cites W2737654582 @default.
- W3215708800 cites W2764853145 @default.
- W3215708800 cites W2773931999 @default.
- W3215708800 cites W2884415573 @default.
- W3215708800 cites W2904870145 @default.
- W3215708800 cites W2919322070 @default.
- W3215708800 cites W2954586649 @default.
- W3215708800 cites W3108680670 @default.
- W3215708800 cites W1536925122 @default.
- W3215708800 doi "https://doi.org/10.1109/epec52095.2021.9621650" @default.
- W3215708800 hasPublicationYear "2021" @default.
- W3215708800 type Work @default.
- W3215708800 sameAs 3215708800 @default.
- W3215708800 citedByCount "4" @default.
- W3215708800 countsByYear W32157088002022 @default.
- W3215708800 crossrefType "proceedings-article" @default.
- W3215708800 hasAuthorship W3215708800A5006162983 @default.
- W3215708800 hasAuthorship W3215708800A5055738584 @default.
- W3215708800 hasAuthorship W3215708800A5063637646 @default.
- W3215708800 hasAuthorship W3215708800A5080299409 @default.
- W3215708800 hasAuthorship W3215708800A5083554304 @default.
- W3215708800 hasConcept C105795698 @default.
- W3215708800 hasConcept C119599485 @default.
- W3215708800 hasConcept C119857082 @default.
- W3215708800 hasConcept C121332964 @default.
- W3215708800 hasConcept C127413603 @default.
- W3215708800 hasConcept C133731056 @default.
- W3215708800 hasConcept C147168706 @default.
- W3215708800 hasConcept C151406439 @default.
- W3215708800 hasConcept C153294291 @default.
- W3215708800 hasConcept C154945302 @default.
- W3215708800 hasConcept C159877910 @default.
- W3215708800 hasConcept C161067210 @default.
- W3215708800 hasConcept C163258240 @default.
- W3215708800 hasConcept C175706884 @default.
- W3215708800 hasConcept C205649164 @default.
- W3215708800 hasConcept C2777052490 @default.
- W3215708800 hasConcept C2781084341 @default.
- W3215708800 hasConcept C31972630 @default.
- W3215708800 hasConcept C33923547 @default.
- W3215708800 hasConcept C38858127 @default.
- W3215708800 hasConcept C41008148 @default.
- W3215708800 hasConcept C47702885 @default.
- W3215708800 hasConcept C50644808 @default.
- W3215708800 hasConcept C62520636 @default.
- W3215708800 hasConcept C67186912 @default.
- W3215708800 hasConcept C74883015 @default.
- W3215708800 hasConcept C77088390 @default.
- W3215708800 hasConcept C78600449 @default.
- W3215708800 hasConcept C89227174 @default.
- W3215708800 hasConceptScore W3215708800C105795698 @default.
- W3215708800 hasConceptScore W3215708800C119599485 @default.
- W3215708800 hasConceptScore W3215708800C119857082 @default.
- W3215708800 hasConceptScore W3215708800C121332964 @default.
- W3215708800 hasConceptScore W3215708800C127413603 @default.
- W3215708800 hasConceptScore W3215708800C133731056 @default.
- W3215708800 hasConceptScore W3215708800C147168706 @default.
- W3215708800 hasConceptScore W3215708800C151406439 @default.
- W3215708800 hasConceptScore W3215708800C153294291 @default.
- W3215708800 hasConceptScore W3215708800C154945302 @default.
- W3215708800 hasConceptScore W3215708800C159877910 @default.
- W3215708800 hasConceptScore W3215708800C161067210 @default.
- W3215708800 hasConceptScore W3215708800C163258240 @default.
- W3215708800 hasConceptScore W3215708800C175706884 @default.
- W3215708800 hasConceptScore W3215708800C205649164 @default.
- W3215708800 hasConceptScore W3215708800C2777052490 @default.
- W3215708800 hasConceptScore W3215708800C2781084341 @default.
- W3215708800 hasConceptScore W3215708800C31972630 @default.
- W3215708800 hasConceptScore W3215708800C33923547 @default.
- W3215708800 hasConceptScore W3215708800C38858127 @default.
- W3215708800 hasConceptScore W3215708800C41008148 @default.
- W3215708800 hasConceptScore W3215708800C47702885 @default.
- W3215708800 hasConceptScore W3215708800C50644808 @default.
- W3215708800 hasConceptScore W3215708800C62520636 @default.
- W3215708800 hasConceptScore W3215708800C67186912 @default.
- W3215708800 hasConceptScore W3215708800C74883015 @default.
- W3215708800 hasConceptScore W3215708800C77088390 @default.
- W3215708800 hasConceptScore W3215708800C78600449 @default.
- W3215708800 hasConceptScore W3215708800C89227174 @default.
- W3215708800 hasLocation W32157088001 @default.
- W3215708800 hasOpenAccess W3215708800 @default.
- W3215708800 hasPrimaryLocation W32157088001 @default.
- W3215708800 hasRelatedWork W2026619973 @default.
- W3215708800 hasRelatedWork W2042488917 @default.