Matches in SemOpenAlex for { <https://semopenalex.org/work/W3215717463> ?p ?o ?g. }
- W3215717463 endingPage "14" @default.
- W3215717463 startingPage "1" @default.
- W3215717463 abstract "The shear failure of reinforced concrete (RC) beams is a critical issue and has attracted the attention of researchers. The specific challenges of shear failure are the numerous factors affecting shear strength, the nonlinear behavior, and the nonlinear relationship between affecting parameters and the concrete properties. This study tackles this challenge by employing Artificial Neural Network (ANN) models. Since, according to No Free Lunch theorem, the performance of optimization algorithms is problem-dependent, this paper aims to assess the feasibility of modeling the shear strength of RC beams using ANNs trained with the Tabu Search Training (TST) algorithm. To this end, 248 experimental results were collected from the literature, and a feed-forward ANN model was employed to predict the shear strength. To assess its feasibility, the ANNs were also modeled using the Particle Swarm Optimization, and Imperialist Competitive Algorithms. As a traditional technique, the multiple regression model was also employed. The shear design equations of ACI-318-2019 were also investigated and compared with Tabu Search Trained ANN model. The analysis of results suggests the superiority of Tabu Search Trained ANNs in comparison to other suggested models in literature and the ACI-318-2019 design code." @default.
- W3215717463 created "2021-12-06" @default.
- W3215717463 creator A5011997260 @default.
- W3215717463 creator A5020310320 @default.
- W3215717463 creator A5063306567 @default.
- W3215717463 date "2021-11-24" @default.
- W3215717463 modified "2023-09-26" @default.
- W3215717463 title "Shear Strength Determination in RC Beams Using ANN Trained with Tabu Search Training Algorithm" @default.
- W3215717463 cites W127010602 @default.
- W3215717463 cites W142248471 @default.
- W3215717463 cites W1837290289 @default.
- W3215717463 cites W1973724244 @default.
- W3215717463 cites W1976940329 @default.
- W3215717463 cites W2001036584 @default.
- W3215717463 cites W2004330510 @default.
- W3215717463 cites W2004630602 @default.
- W3215717463 cites W2011078134 @default.
- W3215717463 cites W2021615569 @default.
- W3215717463 cites W2025993951 @default.
- W3215717463 cites W2056116149 @default.
- W3215717463 cites W2059160586 @default.
- W3215717463 cites W2074433865 @default.
- W3215717463 cites W2083844448 @default.
- W3215717463 cites W2084792706 @default.
- W3215717463 cites W2104670598 @default.
- W3215717463 cites W2109544808 @default.
- W3215717463 cites W2109759398 @default.
- W3215717463 cites W2112951532 @default.
- W3215717463 cites W2117504520 @default.
- W3215717463 cites W2123290640 @default.
- W3215717463 cites W2126448608 @default.
- W3215717463 cites W2129788137 @default.
- W3215717463 cites W2132960552 @default.
- W3215717463 cites W2163271217 @default.
- W3215717463 cites W2170951353 @default.
- W3215717463 cites W2210290898 @default.
- W3215717463 cites W2468790510 @default.
- W3215717463 cites W2524603796 @default.
- W3215717463 cites W2595478076 @default.
- W3215717463 cites W2614368504 @default.
- W3215717463 cites W2760343503 @default.
- W3215717463 cites W2807042118 @default.
- W3215717463 cites W2943381038 @default.
- W3215717463 cites W2967826607 @default.
- W3215717463 cites W2972267365 @default.
- W3215717463 cites W2997519065 @default.
- W3215717463 cites W2998471935 @default.
- W3215717463 cites W3007622739 @default.
- W3215717463 cites W3021171086 @default.
- W3215717463 cites W3047812935 @default.
- W3215717463 cites W3080875352 @default.
- W3215717463 cites W3096922386 @default.
- W3215717463 cites W3164322201 @default.
- W3215717463 cites W3164703074 @default.
- W3215717463 cites W4243982110 @default.
- W3215717463 cites W4246598646 @default.
- W3215717463 cites W584666950 @default.
- W3215717463 cites W657242327 @default.
- W3215717463 cites W657380683 @default.
- W3215717463 doi "https://doi.org/10.1155/2021/1639214" @default.
- W3215717463 hasPublicationYear "2021" @default.
- W3215717463 type Work @default.
- W3215717463 sameAs 3215717463 @default.
- W3215717463 citedByCount "2" @default.
- W3215717463 countsByYear W32157174632022 @default.
- W3215717463 countsByYear W32157174632023 @default.
- W3215717463 crossrefType "journal-article" @default.
- W3215717463 hasAuthorship W3215717463A5011997260 @default.
- W3215717463 hasAuthorship W3215717463A5020310320 @default.
- W3215717463 hasAuthorship W3215717463A5063306567 @default.
- W3215717463 hasBestOaLocation W32157174631 @default.
- W3215717463 hasConcept C11413529 @default.
- W3215717463 hasConcept C119857082 @default.
- W3215717463 hasConcept C121332964 @default.
- W3215717463 hasConcept C123370116 @default.
- W3215717463 hasConcept C127313418 @default.
- W3215717463 hasConcept C127413603 @default.
- W3215717463 hasConcept C127893833 @default.
- W3215717463 hasConcept C158622935 @default.
- W3215717463 hasConcept C159390177 @default.
- W3215717463 hasConcept C159750122 @default.
- W3215717463 hasConcept C159985019 @default.
- W3215717463 hasConcept C192562407 @default.
- W3215717463 hasConcept C41008148 @default.
- W3215717463 hasConcept C50644808 @default.
- W3215717463 hasConcept C62520636 @default.
- W3215717463 hasConcept C66938386 @default.
- W3215717463 hasConcept C85617194 @default.
- W3215717463 hasConcept C96035792 @default.
- W3215717463 hasConceptScore W3215717463C11413529 @default.
- W3215717463 hasConceptScore W3215717463C119857082 @default.
- W3215717463 hasConceptScore W3215717463C121332964 @default.
- W3215717463 hasConceptScore W3215717463C123370116 @default.
- W3215717463 hasConceptScore W3215717463C127313418 @default.
- W3215717463 hasConceptScore W3215717463C127413603 @default.
- W3215717463 hasConceptScore W3215717463C127893833 @default.
- W3215717463 hasConceptScore W3215717463C158622935 @default.
- W3215717463 hasConceptScore W3215717463C159390177 @default.