Matches in SemOpenAlex for { <https://semopenalex.org/work/W3215723174> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W3215723174 abstract "PreviousNext No AccessProceedings of the 14th SEGJ International Symposium, Online, 18–21 October 2021Neural network seismic inversion based on lithofacies classification and seismic attributes to predict reservoir properties away from production wellsAuthors: Lilik HardantoMasako RobbLilik HardantoEmersonSearch for more papers by this author and Masako RobbEmersonSearch for more papers by this authorhttps://doi.org/10.1190/segj2021-029.1 SectionsAboutPDF/ePub ToolsAdd to favoritesDownload CitationsTrack CitationsPermissions ShareFacebookTwitterLinked InRedditEmail Abstract Reservoir characterization uncertainties can be reduced through the optimal incorporation of well log facies and seismic attribute data into seismic inversion workflows. Neural network seismic inversion algorithms in the inversion workflow estimate reservoir properties far away from production wells. Petrophysical properties of the output volumes are validated by several quality control steps to confirm prediction accuracy. This study focuses on reservoir sandstone (oil sand) inside a formation. Multiple 3D seismic attributes and data from five wells, including cores and petrophysical logs, are used as input. Lithofacies classes are created using petrophysical logs and available lithologies from the core description. A neural network seismic inversion method is applied for some well locations. Once the predicted petrophysical property volume is obtained from the inversion workflow, volume rendering and geobody detection are performed to detect oil sand distributions within the reservoir zone. Applying neural network seismic inversion to predict reservoir distributions away from existing wells effectively improves reservoir model efficiency compared to conventional modeling methods. Our model showed that reservoir distributions are sensitive to detection intervals, and the prediction results are highly consistent with existing knowledge of the reservoirs. Because petrophysical properties obtained from seismic data alone can suffer from resolution issues, the net pay from well data should be used together with the calibration of geobody thickness obtained from neural network machine learning. The neural network seismic inversion results showed the highest precision (93%) validation to actual well data. This can help develop a field to increase its production. Keywords: neural network, seismic inversion, lithofacies, reservoirPermalink: https://doi.org/10.1190/segj2021-029.1FiguresReferencesRelatedDetails Proceedings of the 14th SEGJ International Symposium, Online, 18–21 October 2021ISSN (online):2159-6832Copyright: 2021 Pages: 349 publication data© 2021 Published in electronic format with permission by the Society of Exploration Geophysicists of JapanPublisher:Society of Exploration GeophysicistsSociety of Exploration Geophysicists of Japan HistoryPublished Online: 29 Nov 2021 CITATION INFORMATION Lilik Hardanto and Masako Robb, (2021), Neural network seismic inversion based on lithofacies classification and seismic attributes to predict reservoir properties away from production wells, SEG Global Meeting Abstracts : 105-108. https://doi.org/10.1190/segj2021-029.1 Plain-Language Summary Keywordsneural networkseismic inversionlithofaciesreservoirPDF DownloadLoading ..." @default.
- W3215723174 created "2021-12-06" @default.
- W3215723174 creator A5009972024 @default.
- W3215723174 creator A5065764478 @default.
- W3215723174 date "2021-11-29" @default.
- W3215723174 modified "2023-09-23" @default.
- W3215723174 title "Neural network seismic inversion based on lithofacies classification and seismic attributes to predict reservoir properties away from production wells" @default.
- W3215723174 cites W2610885677 @default.
- W3215723174 cites W2747502838 @default.
- W3215723174 cites W2792667426 @default.
- W3215723174 cites W2807914764 @default.
- W3215723174 doi "https://doi.org/10.1190/segj2021-029.1" @default.
- W3215723174 hasPublicationYear "2021" @default.
- W3215723174 type Work @default.
- W3215723174 sameAs 3215723174 @default.
- W3215723174 citedByCount "0" @default.
- W3215723174 crossrefType "proceedings-article" @default.
- W3215723174 hasAuthorship W3215723174A5009972024 @default.
- W3215723174 hasAuthorship W3215723174A5065764478 @default.
- W3215723174 hasConcept C11413529 @default.
- W3215723174 hasConcept C119857082 @default.
- W3215723174 hasConcept C121332964 @default.
- W3215723174 hasConcept C122792734 @default.
- W3215723174 hasConcept C127313418 @default.
- W3215723174 hasConcept C127413603 @default.
- W3215723174 hasConcept C1276947 @default.
- W3215723174 hasConcept C137219930 @default.
- W3215723174 hasConcept C14641988 @default.
- W3215723174 hasConcept C159737794 @default.
- W3215723174 hasConcept C160920958 @default.
- W3215723174 hasConcept C165205528 @default.
- W3215723174 hasConcept C177212765 @default.
- W3215723174 hasConcept C187320778 @default.
- W3215723174 hasConcept C1893757 @default.
- W3215723174 hasConcept C25197100 @default.
- W3215723174 hasConcept C2778668878 @default.
- W3215723174 hasConcept C2778904306 @default.
- W3215723174 hasConcept C2781294565 @default.
- W3215723174 hasConcept C35817400 @default.
- W3215723174 hasConcept C39267094 @default.
- W3215723174 hasConcept C41008148 @default.
- W3215723174 hasConcept C46293882 @default.
- W3215723174 hasConcept C50644808 @default.
- W3215723174 hasConcept C5900021 @default.
- W3215723174 hasConcept C64370902 @default.
- W3215723174 hasConcept C6648577 @default.
- W3215723174 hasConcept C77088390 @default.
- W3215723174 hasConcept C77928131 @default.
- W3215723174 hasConcept C78519656 @default.
- W3215723174 hasConcept C78762247 @default.
- W3215723174 hasConceptScore W3215723174C11413529 @default.
- W3215723174 hasConceptScore W3215723174C119857082 @default.
- W3215723174 hasConceptScore W3215723174C121332964 @default.
- W3215723174 hasConceptScore W3215723174C122792734 @default.
- W3215723174 hasConceptScore W3215723174C127313418 @default.
- W3215723174 hasConceptScore W3215723174C127413603 @default.
- W3215723174 hasConceptScore W3215723174C1276947 @default.
- W3215723174 hasConceptScore W3215723174C137219930 @default.
- W3215723174 hasConceptScore W3215723174C14641988 @default.
- W3215723174 hasConceptScore W3215723174C159737794 @default.
- W3215723174 hasConceptScore W3215723174C160920958 @default.
- W3215723174 hasConceptScore W3215723174C165205528 @default.
- W3215723174 hasConceptScore W3215723174C177212765 @default.
- W3215723174 hasConceptScore W3215723174C187320778 @default.
- W3215723174 hasConceptScore W3215723174C1893757 @default.
- W3215723174 hasConceptScore W3215723174C25197100 @default.
- W3215723174 hasConceptScore W3215723174C2778668878 @default.
- W3215723174 hasConceptScore W3215723174C2778904306 @default.
- W3215723174 hasConceptScore W3215723174C2781294565 @default.
- W3215723174 hasConceptScore W3215723174C35817400 @default.
- W3215723174 hasConceptScore W3215723174C39267094 @default.
- W3215723174 hasConceptScore W3215723174C41008148 @default.
- W3215723174 hasConceptScore W3215723174C46293882 @default.
- W3215723174 hasConceptScore W3215723174C50644808 @default.
- W3215723174 hasConceptScore W3215723174C5900021 @default.
- W3215723174 hasConceptScore W3215723174C64370902 @default.
- W3215723174 hasConceptScore W3215723174C6648577 @default.
- W3215723174 hasConceptScore W3215723174C77088390 @default.
- W3215723174 hasConceptScore W3215723174C77928131 @default.
- W3215723174 hasConceptScore W3215723174C78519656 @default.
- W3215723174 hasConceptScore W3215723174C78762247 @default.
- W3215723174 hasLocation W32157231741 @default.
- W3215723174 hasOpenAccess W3215723174 @default.
- W3215723174 hasPrimaryLocation W32157231741 @default.
- W3215723174 hasRelatedWork W2021186304 @default.
- W3215723174 hasRelatedWork W2042433203 @default.
- W3215723174 hasRelatedWork W2043699255 @default.
- W3215723174 hasRelatedWork W2068541606 @default.
- W3215723174 hasRelatedWork W2081885770 @default.
- W3215723174 hasRelatedWork W2283360800 @default.
- W3215723174 hasRelatedWork W2939585567 @default.
- W3215723174 hasRelatedWork W3174403828 @default.
- W3215723174 hasRelatedWork W3215723174 @default.
- W3215723174 hasRelatedWork W2182618911 @default.
- W3215723174 isParatext "false" @default.
- W3215723174 isRetracted "false" @default.
- W3215723174 magId "3215723174" @default.
- W3215723174 workType "article" @default.