Matches in SemOpenAlex for { <https://semopenalex.org/work/W3215724944> ?p ?o ?g. }
- W3215724944 endingPage "11202" @default.
- W3215724944 startingPage "11202" @default.
- W3215724944 abstract "With the development of cities, urban congestion is nearly an unavoidable problem for almost every large-scale city. Road planning is an effective means to alleviate urban congestion, which is a classical non-deterministic polynomial time (NP) hard problem, and has become an important research hotspot in recent years. A K-means clustering algorithm is an iterative clustering analysis algorithm that has been regarded as an effective means to solve urban road planning problems by scholars for the past several decades; however, it is very difficult to determine the number of clusters and sensitively initialize the center cluster. In order to solve these problems, a novel K-means clustering algorithm based on a noise algorithm is developed to capture urban hotspots in this paper. The noise algorithm is employed to randomly enhance the attribution of data points and output results of clustering by adding noise judgment in order to automatically obtain the number of clusters for the given data and initialize the center cluster. Four unsupervised evaluation indexes, namely, DB, PBM, SC, and SSE, are directly used to evaluate and analyze the clustering results, and a nonparametric Wilcoxon statistical analysis method is employed to verify the distribution states and differences between clustering results. Finally, five taxi GPS datasets from Aracaju (Brazil), San Francisco (USA), Rome (Italy), Chongqing (China), and Beijing (China) are selected to test and verify the effectiveness of the proposed noise K-means clustering algorithm by comparing the algorithm with fuzzy C-means, K-means, and K-means plus approaches. The compared experiment results show that the noise algorithm can reasonably obtain the number of clusters and initialize the center cluster, and the proposed noise K-means clustering algorithm demonstrates better clustering performance and accurately obtains clustering results, as well as effectively capturing urban hotspots." @default.
- W3215724944 created "2021-12-06" @default.
- W3215724944 creator A5009904039 @default.
- W3215724944 creator A5011800995 @default.
- W3215724944 creator A5028352874 @default.
- W3215724944 creator A5079570307 @default.
- W3215724944 creator A5080795359 @default.
- W3215724944 date "2021-11-25" @default.
- W3215724944 modified "2023-10-17" @default.
- W3215724944 title "A Novel K-Means Clustering Algorithm with a Noise Algorithm for Capturing Urban Hotspots" @default.
- W3215724944 cites W1838129148 @default.
- W3215724944 cites W1983753875 @default.
- W3215724944 cites W1985101747 @default.
- W3215724944 cites W1987971958 @default.
- W3215724944 cites W2051224630 @default.
- W3215724944 cites W2052556921 @default.
- W3215724944 cites W2060346657 @default.
- W3215724944 cites W2068074762 @default.
- W3215724944 cites W2086961842 @default.
- W3215724944 cites W2173721748 @default.
- W3215724944 cites W2178390367 @default.
- W3215724944 cites W2232898627 @default.
- W3215724944 cites W2311839348 @default.
- W3215724944 cites W2463787190 @default.
- W3215724944 cites W2537362824 @default.
- W3215724944 cites W2561722812 @default.
- W3215724944 cites W2593144646 @default.
- W3215724944 cites W2774515497 @default.
- W3215724944 cites W2789511664 @default.
- W3215724944 cites W2805339146 @default.
- W3215724944 cites W2890394004 @default.
- W3215724944 cites W2944202940 @default.
- W3215724944 cites W2947380810 @default.
- W3215724944 cites W2954229647 @default.
- W3215724944 cites W2977435455 @default.
- W3215724944 cites W2981162803 @default.
- W3215724944 cites W3004997974 @default.
- W3215724944 cites W3010004116 @default.
- W3215724944 cites W3011240184 @default.
- W3215724944 cites W3012140785 @default.
- W3215724944 cites W3089856079 @default.
- W3215724944 cites W3096193467 @default.
- W3215724944 cites W3104828978 @default.
- W3215724944 cites W3119102269 @default.
- W3215724944 cites W3120683583 @default.
- W3215724944 cites W3121218769 @default.
- W3215724944 cites W3133030105 @default.
- W3215724944 cites W3134728403 @default.
- W3215724944 cites W3157443152 @default.
- W3215724944 cites W3159249382 @default.
- W3215724944 cites W3159502203 @default.
- W3215724944 cites W3192027223 @default.
- W3215724944 cites W3209050129 @default.
- W3215724944 cites W3214092996 @default.
- W3215724944 doi "https://doi.org/10.3390/app112311202" @default.
- W3215724944 hasPublicationYear "2021" @default.
- W3215724944 type Work @default.
- W3215724944 sameAs 3215724944 @default.
- W3215724944 citedByCount "132" @default.
- W3215724944 countsByYear W32157249442021 @default.
- W3215724944 countsByYear W32157249442022 @default.
- W3215724944 countsByYear W32157249442023 @default.
- W3215724944 crossrefType "journal-article" @default.
- W3215724944 hasAuthorship W3215724944A5009904039 @default.
- W3215724944 hasAuthorship W3215724944A5011800995 @default.
- W3215724944 hasAuthorship W3215724944A5028352874 @default.
- W3215724944 hasAuthorship W3215724944A5079570307 @default.
- W3215724944 hasAuthorship W3215724944A5080795359 @default.
- W3215724944 hasBestOaLocation W32157249441 @default.
- W3215724944 hasConcept C102366305 @default.
- W3215724944 hasConcept C104047586 @default.
- W3215724944 hasConcept C105795698 @default.
- W3215724944 hasConcept C11413529 @default.
- W3215724944 hasConcept C124101348 @default.
- W3215724944 hasConcept C149872217 @default.
- W3215724944 hasConcept C154945302 @default.
- W3215724944 hasConcept C166957645 @default.
- W3215724944 hasConcept C17212007 @default.
- W3215724944 hasConcept C191935318 @default.
- W3215724944 hasConcept C205649164 @default.
- W3215724944 hasConcept C2778304055 @default.
- W3215724944 hasConcept C33923547 @default.
- W3215724944 hasConcept C41008148 @default.
- W3215724944 hasConcept C73555534 @default.
- W3215724944 hasConceptScore W3215724944C102366305 @default.
- W3215724944 hasConceptScore W3215724944C104047586 @default.
- W3215724944 hasConceptScore W3215724944C105795698 @default.
- W3215724944 hasConceptScore W3215724944C11413529 @default.
- W3215724944 hasConceptScore W3215724944C124101348 @default.
- W3215724944 hasConceptScore W3215724944C149872217 @default.
- W3215724944 hasConceptScore W3215724944C154945302 @default.
- W3215724944 hasConceptScore W3215724944C166957645 @default.
- W3215724944 hasConceptScore W3215724944C17212007 @default.
- W3215724944 hasConceptScore W3215724944C191935318 @default.
- W3215724944 hasConceptScore W3215724944C205649164 @default.
- W3215724944 hasConceptScore W3215724944C2778304055 @default.
- W3215724944 hasConceptScore W3215724944C33923547 @default.
- W3215724944 hasConceptScore W3215724944C41008148 @default.