Matches in SemOpenAlex for { <https://semopenalex.org/work/W3215725522> ?p ?o ?g. }
- W3215725522 endingPage "179" @default.
- W3215725522 startingPage "171" @default.
- W3215725522 abstract "Background and AimsDiagnosis of monogenic disease is increasingly important for patient care and personalizing therapy. However, the current process is nonstandardized, expensive, and time consuming. There is currently no accepted strategy to help identify disease-causing variants in monogenic inflammatory bowel disease (IBD). The aim of the study is to develop a prioritization strategy for monogenic IBD variant discovery through detailed analysis of a whole-exome sequencing (WES) data set.MethodsAll consenting pediatric patients with IBD presenting to our tertiary care hospital during the study period were enrolled and underwent WES (n = 1005). Available family members also underwent WES. Variants were analyzed en masse using the GEMINI framework and were further annotated using data from dbNSFP, Combined Annotation Dependent Depletion, and gnomAD. Known disease-causing variants (n = 36) were used as positive controls. Machine learning algorithms were optimized and then compared to assist with identifying monogenic IBD case characteristics.ResultsInitial gene-level analysis identified 11 genes not previously linked to IBD that could potentially harbor IBD-causing variants. Machine learning algorithms identified 4 primary variant characteristics (Combined Annotation Dependent Depletion score, dbNSFP score, relationship with a known immunodeficiency gene, and alternate allele frequency), and optimal threshold values for each were determined to assist with identifying monogenic IBD variants. Based on these characteristics, an automated variant prioritization pipeline was then created that filters and prioritizes variants from >100,000 variants per patient down to a mean of 15. This pipeline is available online for all to use.ConclusionLeveraging a large WES data set, we demonstrate a statistically rigorous strategy for prioritization of variants for monogenic IBD diagnosis. Diagnosis of monogenic disease is increasingly important for patient care and personalizing therapy. However, the current process is nonstandardized, expensive, and time consuming. There is currently no accepted strategy to help identify disease-causing variants in monogenic inflammatory bowel disease (IBD). The aim of the study is to develop a prioritization strategy for monogenic IBD variant discovery through detailed analysis of a whole-exome sequencing (WES) data set. All consenting pediatric patients with IBD presenting to our tertiary care hospital during the study period were enrolled and underwent WES (n = 1005). Available family members also underwent WES. Variants were analyzed en masse using the GEMINI framework and were further annotated using data from dbNSFP, Combined Annotation Dependent Depletion, and gnomAD. Known disease-causing variants (n = 36) were used as positive controls. Machine learning algorithms were optimized and then compared to assist with identifying monogenic IBD case characteristics. Initial gene-level analysis identified 11 genes not previously linked to IBD that could potentially harbor IBD-causing variants. Machine learning algorithms identified 4 primary variant characteristics (Combined Annotation Dependent Depletion score, dbNSFP score, relationship with a known immunodeficiency gene, and alternate allele frequency), and optimal threshold values for each were determined to assist with identifying monogenic IBD variants. Based on these characteristics, an automated variant prioritization pipeline was then created that filters and prioritizes variants from >100,000 variants per patient down to a mean of 15. This pipeline is available online for all to use. Leveraging a large WES data set, we demonstrate a statistically rigorous strategy for prioritization of variants for monogenic IBD diagnosis." @default.
- W3215725522 created "2021-12-06" @default.
- W3215725522 creator A5008230538 @default.
- W3215725522 creator A5009290511 @default.
- W3215725522 creator A5018948884 @default.
- W3215725522 creator A5033987597 @default.
- W3215725522 creator A5035802660 @default.
- W3215725522 creator A5058592430 @default.
- W3215725522 creator A5061222791 @default.
- W3215725522 creator A5067402350 @default.
- W3215725522 creator A5069859137 @default.
- W3215725522 creator A5073296716 @default.
- W3215725522 creator A5079825013 @default.
- W3215725522 creator A5083384050 @default.
- W3215725522 date "2022-01-01" @default.
- W3215725522 modified "2023-09-23" @default.
- W3215725522 title "A Machine Learning Approach to Identifying Causal Monogenic Variants in Inflammatory Bowel Disease" @default.
- W3215725522 cites W1014257459 @default.
- W3215725522 cites W1829435590 @default.
- W3215725522 cites W2113534011 @default.
- W3215725522 cites W2122676398 @default.
- W3215725522 cites W2169567789 @default.
- W3215725522 cites W2182578492 @default.
- W3215725522 cites W2562408240 @default.
- W3215725522 cites W2571503386 @default.
- W3215725522 cites W2579361964 @default.
- W3215725522 cites W2739298907 @default.
- W3215725522 cites W2746751314 @default.
- W3215725522 cites W2770026599 @default.
- W3215725522 cites W2806766477 @default.
- W3215725522 cites W2900569176 @default.
- W3215725522 cites W2905452503 @default.
- W3215725522 cites W2998419708 @default.
- W3215725522 cites W3000301584 @default.
- W3215725522 cites W3006764495 @default.
- W3215725522 cites W3007865891 @default.
- W3215725522 cites W3018118540 @default.
- W3215725522 cites W3020378214 @default.
- W3215725522 cites W3029661147 @default.
- W3215725522 cites W3094635236 @default.
- W3215725522 cites W3107322429 @default.
- W3215725522 cites W3117628517 @default.
- W3215725522 cites W3122172605 @default.
- W3215725522 cites W3150131477 @default.
- W3215725522 doi "https://doi.org/10.1016/j.gastha.2021.11.002" @default.
- W3215725522 hasPublicationYear "2022" @default.
- W3215725522 type Work @default.
- W3215725522 sameAs 3215725522 @default.
- W3215725522 citedByCount "0" @default.
- W3215725522 crossrefType "journal-article" @default.
- W3215725522 hasAuthorship W3215725522A5008230538 @default.
- W3215725522 hasAuthorship W3215725522A5009290511 @default.
- W3215725522 hasAuthorship W3215725522A5018948884 @default.
- W3215725522 hasAuthorship W3215725522A5033987597 @default.
- W3215725522 hasAuthorship W3215725522A5035802660 @default.
- W3215725522 hasAuthorship W3215725522A5058592430 @default.
- W3215725522 hasAuthorship W3215725522A5061222791 @default.
- W3215725522 hasAuthorship W3215725522A5067402350 @default.
- W3215725522 hasAuthorship W3215725522A5069859137 @default.
- W3215725522 hasAuthorship W3215725522A5073296716 @default.
- W3215725522 hasAuthorship W3215725522A5079825013 @default.
- W3215725522 hasAuthorship W3215725522A5083384050 @default.
- W3215725522 hasBestOaLocation W32157255221 @default.
- W3215725522 hasConcept C104317684 @default.
- W3215725522 hasConcept C10590036 @default.
- W3215725522 hasConcept C119857082 @default.
- W3215725522 hasConcept C126322002 @default.
- W3215725522 hasConcept C162324750 @default.
- W3215725522 hasConcept C16671776 @default.
- W3215725522 hasConcept C2777615720 @default.
- W3215725522 hasConcept C2778260677 @default.
- W3215725522 hasConcept C2779134260 @default.
- W3215725522 hasConcept C41008148 @default.
- W3215725522 hasConcept C501734568 @default.
- W3215725522 hasConcept C539667460 @default.
- W3215725522 hasConcept C54355233 @default.
- W3215725522 hasConcept C60644358 @default.
- W3215725522 hasConcept C70721500 @default.
- W3215725522 hasConcept C71924100 @default.
- W3215725522 hasConcept C86803240 @default.
- W3215725522 hasConceptScore W3215725522C104317684 @default.
- W3215725522 hasConceptScore W3215725522C10590036 @default.
- W3215725522 hasConceptScore W3215725522C119857082 @default.
- W3215725522 hasConceptScore W3215725522C126322002 @default.
- W3215725522 hasConceptScore W3215725522C162324750 @default.
- W3215725522 hasConceptScore W3215725522C16671776 @default.
- W3215725522 hasConceptScore W3215725522C2777615720 @default.
- W3215725522 hasConceptScore W3215725522C2778260677 @default.
- W3215725522 hasConceptScore W3215725522C2779134260 @default.
- W3215725522 hasConceptScore W3215725522C41008148 @default.
- W3215725522 hasConceptScore W3215725522C501734568 @default.
- W3215725522 hasConceptScore W3215725522C539667460 @default.
- W3215725522 hasConceptScore W3215725522C54355233 @default.
- W3215725522 hasConceptScore W3215725522C60644358 @default.
- W3215725522 hasConceptScore W3215725522C70721500 @default.
- W3215725522 hasConceptScore W3215725522C71924100 @default.
- W3215725522 hasConceptScore W3215725522C86803240 @default.
- W3215725522 hasIssue "2" @default.