Matches in SemOpenAlex for { <https://semopenalex.org/work/W3215725632> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W3215725632 abstract "Benefit from the promising features of second-order correlation, ghost imaging (GI) has received extensive attentions in recent years. Simultaneously, GI is affected by the poor trade-off between sampling rate and imaging quality. The traditional image reconstruction method in GI is to accumulate the action result of each speckle and the corresponding bucket signal. We found that the image reconstruction process of GI is very similar to the Recurrent Neural Network (RNN), which is one of the deep learning algorithm. In this paper, we proposed a novel method that effectively implements GI on the RNN architecture, called GI-RNN. The state of each layer in RNN is determined by the output of the previous layer and the input of this layer, and the output of the network is the sum of all previous states. Therefore, we take the speckle of each illumination and the corresponding bucket signal as the input of each layer, and the output of the network is the sum of all previous speckle and bucket signal, which is the image of the target. The testing results show that the proposed method can achieve image reconstruction at a very low sampling rate (0.38$%$). Moreover, we compare GI-RNN with traditional GI algorithm and compressed sensing algorithm. The results of different targets show that GI-RNN is 6.61 dB higher than compressed sensing algorithm and 12.58 dB higher than traditional GI algorithm on average. In our view, the proposed method makes an important step to applications of GI." @default.
- W3215725632 created "2021-12-06" @default.
- W3215725632 creator A5004188371 @default.
- W3215725632 creator A5005804594 @default.
- W3215725632 creator A5021356241 @default.
- W3215725632 creator A5025246429 @default.
- W3215725632 creator A5029537028 @default.
- W3215725632 creator A5048421704 @default.
- W3215725632 creator A5063440824 @default.
- W3215725632 creator A5084612994 @default.
- W3215725632 date "2021-12-01" @default.
- W3215725632 modified "2023-10-16" @default.
- W3215725632 title "Ghost Imaging Based on Recurrent Neural Network" @default.
- W3215725632 cites W2012217721 @default.
- W3215725632 cites W2017262690 @default.
- W3215725632 cites W2962817839 @default.
- W3215725632 doi "https://doi.org/10.1364/oe.458345" @default.
- W3215725632 hasPublicationYear "2021" @default.
- W3215725632 type Work @default.
- W3215725632 sameAs 3215725632 @default.
- W3215725632 citedByCount "0" @default.
- W3215725632 crossrefType "posted-content" @default.
- W3215725632 hasAuthorship W3215725632A5004188371 @default.
- W3215725632 hasAuthorship W3215725632A5005804594 @default.
- W3215725632 hasAuthorship W3215725632A5021356241 @default.
- W3215725632 hasAuthorship W3215725632A5025246429 @default.
- W3215725632 hasAuthorship W3215725632A5029537028 @default.
- W3215725632 hasAuthorship W3215725632A5048421704 @default.
- W3215725632 hasAuthorship W3215725632A5063440824 @default.
- W3215725632 hasAuthorship W3215725632A5084612994 @default.
- W3215725632 hasBestOaLocation W32157256321 @default.
- W3215725632 hasConcept C102290492 @default.
- W3215725632 hasConcept C106131492 @default.
- W3215725632 hasConcept C11413529 @default.
- W3215725632 hasConcept C115961682 @default.
- W3215725632 hasConcept C124851039 @default.
- W3215725632 hasConcept C140779682 @default.
- W3215725632 hasConcept C147168706 @default.
- W3215725632 hasConcept C153180895 @default.
- W3215725632 hasConcept C154945302 @default.
- W3215725632 hasConcept C178790620 @default.
- W3215725632 hasConcept C185592680 @default.
- W3215725632 hasConcept C199360897 @default.
- W3215725632 hasConcept C2779227376 @default.
- W3215725632 hasConcept C2779843651 @default.
- W3215725632 hasConcept C31972630 @default.
- W3215725632 hasConcept C41008148 @default.
- W3215725632 hasConcept C50644808 @default.
- W3215725632 hasConceptScore W3215725632C102290492 @default.
- W3215725632 hasConceptScore W3215725632C106131492 @default.
- W3215725632 hasConceptScore W3215725632C11413529 @default.
- W3215725632 hasConceptScore W3215725632C115961682 @default.
- W3215725632 hasConceptScore W3215725632C124851039 @default.
- W3215725632 hasConceptScore W3215725632C140779682 @default.
- W3215725632 hasConceptScore W3215725632C147168706 @default.
- W3215725632 hasConceptScore W3215725632C153180895 @default.
- W3215725632 hasConceptScore W3215725632C154945302 @default.
- W3215725632 hasConceptScore W3215725632C178790620 @default.
- W3215725632 hasConceptScore W3215725632C185592680 @default.
- W3215725632 hasConceptScore W3215725632C199360897 @default.
- W3215725632 hasConceptScore W3215725632C2779227376 @default.
- W3215725632 hasConceptScore W3215725632C2779843651 @default.
- W3215725632 hasConceptScore W3215725632C31972630 @default.
- W3215725632 hasConceptScore W3215725632C41008148 @default.
- W3215725632 hasConceptScore W3215725632C50644808 @default.
- W3215725632 hasLocation W32157256321 @default.
- W3215725632 hasLocation W32157256322 @default.
- W3215725632 hasLocation W32157256323 @default.
- W3215725632 hasOpenAccess W3215725632 @default.
- W3215725632 hasPrimaryLocation W32157256321 @default.
- W3215725632 hasRelatedWork W2018008899 @default.
- W3215725632 hasRelatedWork W2019193285 @default.
- W3215725632 hasRelatedWork W2042019967 @default.
- W3215725632 hasRelatedWork W2049184638 @default.
- W3215725632 hasRelatedWork W2158224665 @default.
- W3215725632 hasRelatedWork W2537887767 @default.
- W3215725632 hasRelatedWork W2793402697 @default.
- W3215725632 hasRelatedWork W2967406116 @default.
- W3215725632 hasRelatedWork W4386174346 @default.
- W3215725632 hasRelatedWork W2093785611 @default.
- W3215725632 isParatext "false" @default.
- W3215725632 isRetracted "false" @default.
- W3215725632 magId "3215725632" @default.
- W3215725632 workType "article" @default.