Matches in SemOpenAlex for { <https://semopenalex.org/work/W3215733235> ?p ?o ?g. }
Showing items 1 to 53 of
53
with 100 items per page.
- W3215733235 abstract "Abstract We formulate Friedmann’s equations as second-order linear differential equations. This is done using techniques related to the Schwarzian derivative that selects the $$beta $$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mi>β</mml:mi> </mml:math> -times $$t_beta :=int ^t a^{-2beta }$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:msub> <mml:mi>t</mml:mi> <mml:mi>β</mml:mi> </mml:msub> <mml:mo>:</mml:mo> <mml:mo>=</mml:mo> <mml:msup> <mml:mo>∫</mml:mo> <mml:mi>t</mml:mi> </mml:msup> <mml:msup> <mml:mi>a</mml:mi> <mml:mrow> <mml:mo>-</mml:mo> <mml:mn>2</mml:mn> <mml:mi>β</mml:mi> </mml:mrow> </mml:msup> </mml:mrow> </mml:math> , where a is the scale factor. In particular, it turns out that Friedmann’s equations are equivalent to the eigenvalue problems $$begin{aligned} O_{1/2} Psi =frac{Lambda }{12}Psi , quad O_1 a =-frac{Lambda }{3} a , end{aligned}$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:mtable> <mml:mtr> <mml:mtd> <mml:mrow> <mml:msub> <mml:mi>O</mml:mi> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>/</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:msub> <mml:mi>Ψ</mml:mi> <mml:mo>=</mml:mo> <mml:mfrac> <mml:mi>Λ</mml:mi> <mml:mn>12</mml:mn> </mml:mfrac> <mml:mi>Ψ</mml:mi> <mml:mo>,</mml:mo> <mml:mspace /> <mml:msub> <mml:mi>O</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mi>a</mml:mi> <mml:mo>=</mml:mo> <mml:mo>-</mml:mo> <mml:mfrac> <mml:mi>Λ</mml:mi> <mml:mn>3</mml:mn> </mml:mfrac> <mml:mi>a</mml:mi> <mml:mo>,</mml:mo> </mml:mrow> </mml:mtd> </mml:mtr> </mml:mtable> </mml:mrow> </mml:math> which is suggestive of a measurement problem. $$O_{beta }(rho ,p)$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:msub> <mml:mi>O</mml:mi> <mml:mi>β</mml:mi> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>ρ</mml:mi> <mml:mo>,</mml:mo> <mml:mi>p</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> are space-independent Klein–Gordon operators, depending only on energy density and pressure, and related to the Klein–Gordon Hamilton–Jacobi equations. The $$O_beta $$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:msub> <mml:mi>O</mml:mi> <mml:mi>β</mml:mi> </mml:msub> </mml:math> ’s are also independent of the spatial curvature, labeled by k , and absorbed in $$begin{aligned} Psi =sqrt{a} e^{frac{i}{2}sqrt{k}eta } . end{aligned}$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:mtable> <mml:mtr> <mml:mtd> <mml:mrow> <mml:mi>Ψ</mml:mi> <mml:mo>=</mml:mo> <mml:msqrt> <mml:mi>a</mml:mi> </mml:msqrt> <mml:msup> <mml:mi>e</mml:mi> <mml:mrow> <mml:mfrac> <mml:mi>i</mml:mi> <mml:mn>2</mml:mn> </mml:mfrac> <mml:msqrt> <mml:mi>k</mml:mi> </mml:msqrt> <mml:mi>η</mml:mi> </mml:mrow> </mml:msup> <mml:mo>.</mml:mo> </mml:mrow> </mml:mtd> </mml:mtr> </mml:mtable> </mml:mrow> </mml:math> The above pair of equations is the unique possible linear form of Friedmann’s equations unless $$k=0$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:math> , in which case there are infinitely many pairs of linear equations. Such a uniqueness just selects the conformal time $$eta equiv t_{1/2}$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:mi>η</mml:mi> <mml:mo>≡</mml:mo> <mml:msub> <mml:mi>t</mml:mi> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>/</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:math> among the $$t_beta $$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:msub> <mml:mi>t</mml:mi> <mml:mi>β</mml:mi> </mml:msub> </mml:math> ’s, which is the key to absorb the curvature term. An immediate consequence of the linear form is that it reveals a new symmetry of Friedmann’s equations in flat space." @default.
- W3215733235 created "2021-12-06" @default.
- W3215733235 creator A5034971791 @default.
- W3215733235 date "2021-12-01" @default.
- W3215733235 modified "2023-09-27" @default.
- W3215733235 title "Universe as Klein–Gordon eigenstates" @default.
- W3215733235 cites W1755020925 @default.
- W3215733235 cites W1856506247 @default.
- W3215733235 cites W1980561973 @default.
- W3215733235 cites W1981767490 @default.
- W3215733235 cites W2003792694 @default.
- W3215733235 cites W2037128977 @default.
- W3215733235 cites W2072529765 @default.
- W3215733235 cites W2091725547 @default.
- W3215733235 cites W2099850174 @default.
- W3215733235 cites W2614641242 @default.
- W3215733235 cites W3038124754 @default.
- W3215733235 cites W3100229875 @default.
- W3215733235 cites W3105394047 @default.
- W3215733235 cites W3109725294 @default.
- W3215733235 doi "https://doi.org/10.1140/epjc/s10052-021-09865-4" @default.
- W3215733235 hasPublicationYear "2021" @default.
- W3215733235 type Work @default.
- W3215733235 sameAs 3215733235 @default.
- W3215733235 citedByCount "0" @default.
- W3215733235 crossrefType "journal-article" @default.
- W3215733235 hasAuthorship W3215733235A5034971791 @default.
- W3215733235 hasBestOaLocation W32157332351 @default.
- W3215733235 hasConcept C11413529 @default.
- W3215733235 hasConcept C41008148 @default.
- W3215733235 hasConceptScore W3215733235C11413529 @default.
- W3215733235 hasConceptScore W3215733235C41008148 @default.
- W3215733235 hasIssue "12" @default.
- W3215733235 hasLocation W32157332351 @default.
- W3215733235 hasLocation W32157332352 @default.
- W3215733235 hasLocation W32157332353 @default.
- W3215733235 hasOpenAccess W3215733235 @default.
- W3215733235 hasPrimaryLocation W32157332351 @default.
- W3215733235 hasRelatedWork W2051487156 @default.
- W3215733235 hasRelatedWork W2052122378 @default.
- W3215733235 hasRelatedWork W2053286651 @default.
- W3215733235 hasRelatedWork W2073681303 @default.
- W3215733235 hasRelatedWork W2317200988 @default.
- W3215733235 hasRelatedWork W2544423928 @default.
- W3215733235 hasRelatedWork W2947381795 @default.
- W3215733235 hasRelatedWork W2181413294 @default.
- W3215733235 hasRelatedWork W2181743346 @default.
- W3215733235 hasRelatedWork W2187401768 @default.
- W3215733235 hasVolume "81" @default.
- W3215733235 isParatext "false" @default.
- W3215733235 isRetracted "false" @default.
- W3215733235 magId "3215733235" @default.
- W3215733235 workType "article" @default.