Matches in SemOpenAlex for { <https://semopenalex.org/work/W3215736701> ?p ?o ?g. }
- W3215736701 endingPage "855" @default.
- W3215736701 startingPage "846" @default.
- W3215736701 abstract "With the proliferation of knowledge graphs, modeling data with complex multirelational structure has gained increasing attention in the area of statistical relational learning. One of the most important goals of statistical relational learning is link prediction, i.e., predicting whether certain relations exist in the knowledge graph. A large number of models and algorithms have been proposed to perform link prediction, among which tensor factorization method has proven to achieve state-of-the-art performance in terms of computation efficiency and prediction accuracy. However, a common drawback of the existing tensor factorization models is that the missing relations and non-existing relations are treated in the same way, which results in a loss of information. To address this issue, we propose a binary tensor factorization model with probit link, which not only inherits the computation efficiency from the classic tensor factorization model but also accounts for the binary nature of relational data. Our proposed probit tensor factorization (PTF) model shows advantages in both the prediction accuracy and interpretability" @default.
- W3215736701 created "2021-12-06" @default.
- W3215736701 creator A5018742393 @default.
- W3215736701 creator A5059203764 @default.
- W3215736701 creator A5089012283 @default.
- W3215736701 creator A5090455375 @default.
- W3215736701 date "2022-03-11" @default.
- W3215736701 modified "2023-10-17" @default.
- W3215736701 title "A Probit Tensor Factorization Model For Relational Learning" @default.
- W3215736701 cites W102708294 @default.
- W3215736701 cites W1827214880 @default.
- W3215736701 cites W188608978 @default.
- W3215736701 cites W1963826206 @default.
- W3215736701 cites W1967087957 @default.
- W3215736701 cites W1972365594 @default.
- W3215736701 cites W1974403130 @default.
- W3215736701 cites W1995368504 @default.
- W3215736701 cites W1996564243 @default.
- W3215736701 cites W2008114373 @default.
- W3215736701 cites W2023246751 @default.
- W3215736701 cites W2035182720 @default.
- W3215736701 cites W2040006565 @default.
- W3215736701 cites W2049633694 @default.
- W3215736701 cites W2075517844 @default.
- W3215736701 cites W2089349245 @default.
- W3215736701 cites W2119101292 @default.
- W3215736701 cites W2125027602 @default.
- W3215736701 cites W2138485466 @default.
- W3215736701 cites W2168175751 @default.
- W3215736701 cites W2170407643 @default.
- W3215736701 cites W2258054274 @default.
- W3215736701 cites W2359252770 @default.
- W3215736701 cites W2393319904 @default.
- W3215736701 cites W2567289819 @default.
- W3215736701 cites W2774837955 @default.
- W3215736701 cites W2796165036 @default.
- W3215736701 cites W2807764928 @default.
- W3215736701 cites W2885408128 @default.
- W3215736701 cites W2924170235 @default.
- W3215736701 cites W2962756421 @default.
- W3215736701 cites W2999009778 @default.
- W3215736701 cites W301343586 @default.
- W3215736701 cites W3099329193 @default.
- W3215736701 cites W3102581530 @default.
- W3215736701 cites W3104097132 @default.
- W3215736701 cites W340632675 @default.
- W3215736701 cites W4232932184 @default.
- W3215736701 cites W614875374 @default.
- W3215736701 cites W68132019 @default.
- W3215736701 doi "https://doi.org/10.1080/10618600.2021.2003204" @default.
- W3215736701 hasPublicationYear "2022" @default.
- W3215736701 type Work @default.
- W3215736701 sameAs 3215736701 @default.
- W3215736701 citedByCount "1" @default.
- W3215736701 countsByYear W32157367012022 @default.
- W3215736701 crossrefType "journal-article" @default.
- W3215736701 hasAuthorship W3215736701A5018742393 @default.
- W3215736701 hasAuthorship W3215736701A5059203764 @default.
- W3215736701 hasAuthorship W3215736701A5089012283 @default.
- W3215736701 hasAuthorship W3215736701A5090455375 @default.
- W3215736701 hasBestOaLocation W32157367012 @default.
- W3215736701 hasConcept C11413529 @default.
- W3215736701 hasConcept C119857082 @default.
- W3215736701 hasConcept C124101348 @default.
- W3215736701 hasConcept C149782125 @default.
- W3215736701 hasConcept C154945302 @default.
- W3215736701 hasConcept C155281189 @default.
- W3215736701 hasConcept C177877439 @default.
- W3215736701 hasConcept C184314375 @default.
- W3215736701 hasConcept C187834632 @default.
- W3215736701 hasConcept C202444582 @default.
- W3215736701 hasConcept C33923547 @default.
- W3215736701 hasConcept C41008148 @default.
- W3215736701 hasConcept C46704056 @default.
- W3215736701 hasConcept C5655090 @default.
- W3215736701 hasConcept C67257552 @default.
- W3215736701 hasConcept C70339092 @default.
- W3215736701 hasConceptScore W3215736701C11413529 @default.
- W3215736701 hasConceptScore W3215736701C119857082 @default.
- W3215736701 hasConceptScore W3215736701C124101348 @default.
- W3215736701 hasConceptScore W3215736701C149782125 @default.
- W3215736701 hasConceptScore W3215736701C154945302 @default.
- W3215736701 hasConceptScore W3215736701C155281189 @default.
- W3215736701 hasConceptScore W3215736701C177877439 @default.
- W3215736701 hasConceptScore W3215736701C184314375 @default.
- W3215736701 hasConceptScore W3215736701C187834632 @default.
- W3215736701 hasConceptScore W3215736701C202444582 @default.
- W3215736701 hasConceptScore W3215736701C33923547 @default.
- W3215736701 hasConceptScore W3215736701C41008148 @default.
- W3215736701 hasConceptScore W3215736701C46704056 @default.
- W3215736701 hasConceptScore W3215736701C5655090 @default.
- W3215736701 hasConceptScore W3215736701C67257552 @default.
- W3215736701 hasConceptScore W3215736701C70339092 @default.
- W3215736701 hasFunder F4320306076 @default.
- W3215736701 hasIssue "3" @default.
- W3215736701 hasLocation W32157367011 @default.
- W3215736701 hasLocation W32157367012 @default.
- W3215736701 hasOpenAccess W3215736701 @default.