Matches in SemOpenAlex for { <https://semopenalex.org/work/W3215747241> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W3215747241 endingPage "18" @default.
- W3215747241 startingPage "10" @default.
- W3215747241 abstract "Motor vehicle crashes involving drowsy driving are huge in number all over the world. Many studies revealed that 10%–30% of crashes are due to drowsy driving. Fatigue has costly effects on the safety, health, and quality of life. This drowsiness of drivers can be detected using various methods, for example, algorithms based on behavioural gestures, physiological signals and vitals. Also, few of them are vehicle based. Drowsiness of drivers was detected based on steering wheel movement and lane change patterns. A pattern is derived based on slow drifting and fast corrective steering movement. A prototype that detects the drowsiness of an automobile driver using artificial intelligence techniques, precisely using open-source tools like TensorFlow Lite on a Raspberry Pi development board, is developed. The TensorFlow model is trained on images captured from the video with the help of object detection using cascade classifier. In order to have a better accuracy, an Inception v3 architecture is used in pre-training the model with the image dataset. The final model is created and trained using long short-term memory and then the final TensorFlow model is converted to TensorFlow Lite model and this Lite model is used on Raspberry Pi board to detect the drowsiness of drivers. The results are comparable with desktop-based results in the literature." @default.
- W3215747241 created "2021-12-06" @default.
- W3215747241 creator A5032953548 @default.
- W3215747241 creator A5069172165 @default.
- W3215747241 date "2021-11-25" @default.
- W3215747241 modified "2023-10-18" @default.
- W3215747241 title "An embedded intelligence engine for driver drowsiness detection" @default.
- W3215747241 cites W1504178287 @default.
- W3215747241 cites W2049712033 @default.
- W3215747241 cites W2064675550 @default.
- W3215747241 cites W2326965557 @default.
- W3215747241 cites W2738749209 @default.
- W3215747241 cites W2906548844 @default.
- W3215747241 cites W2948593529 @default.
- W3215747241 cites W2989793251 @default.
- W3215747241 cites W3024740627 @default.
- W3215747241 cites W3097096317 @default.
- W3215747241 cites W3003438106 @default.
- W3215747241 doi "https://doi.org/10.1049/cdt2.12036" @default.
- W3215747241 hasPublicationYear "2021" @default.
- W3215747241 type Work @default.
- W3215747241 sameAs 3215747241 @default.
- W3215747241 citedByCount "2" @default.
- W3215747241 countsByYear W32157472412022 @default.
- W3215747241 countsByYear W32157472412023 @default.
- W3215747241 crossrefType "journal-article" @default.
- W3215747241 hasAuthorship W3215747241A5032953548 @default.
- W3215747241 hasAuthorship W3215747241A5069172165 @default.
- W3215747241 hasBestOaLocation W32157472411 @default.
- W3215747241 hasConcept C127413603 @default.
- W3215747241 hasConcept C149635348 @default.
- W3215747241 hasConcept C154945302 @default.
- W3215747241 hasConcept C171146098 @default.
- W3215747241 hasConcept C2780354894 @default.
- W3215747241 hasConcept C2985745059 @default.
- W3215747241 hasConcept C31972630 @default.
- W3215747241 hasConcept C41008148 @default.
- W3215747241 hasConcept C44154836 @default.
- W3215747241 hasConcept C79403827 @default.
- W3215747241 hasConcept C81860439 @default.
- W3215747241 hasConcept C95623464 @default.
- W3215747241 hasConceptScore W3215747241C127413603 @default.
- W3215747241 hasConceptScore W3215747241C149635348 @default.
- W3215747241 hasConceptScore W3215747241C154945302 @default.
- W3215747241 hasConceptScore W3215747241C171146098 @default.
- W3215747241 hasConceptScore W3215747241C2780354894 @default.
- W3215747241 hasConceptScore W3215747241C2985745059 @default.
- W3215747241 hasConceptScore W3215747241C31972630 @default.
- W3215747241 hasConceptScore W3215747241C41008148 @default.
- W3215747241 hasConceptScore W3215747241C44154836 @default.
- W3215747241 hasConceptScore W3215747241C79403827 @default.
- W3215747241 hasConceptScore W3215747241C81860439 @default.
- W3215747241 hasConceptScore W3215747241C95623464 @default.
- W3215747241 hasIssue "1" @default.
- W3215747241 hasLocation W32157472411 @default.
- W3215747241 hasLocation W32157472412 @default.
- W3215747241 hasOpenAccess W3215747241 @default.
- W3215747241 hasPrimaryLocation W32157472411 @default.
- W3215747241 hasRelatedWork W1891287906 @default.
- W3215747241 hasRelatedWork W1969923398 @default.
- W3215747241 hasRelatedWork W2036807459 @default.
- W3215747241 hasRelatedWork W2058170566 @default.
- W3215747241 hasRelatedWork W2166024367 @default.
- W3215747241 hasRelatedWork W2229312674 @default.
- W3215747241 hasRelatedWork W2755342338 @default.
- W3215747241 hasRelatedWork W2772917594 @default.
- W3215747241 hasRelatedWork W2899084033 @default.
- W3215747241 hasRelatedWork W3116076068 @default.
- W3215747241 hasVolume "16" @default.
- W3215747241 isParatext "false" @default.
- W3215747241 isRetracted "false" @default.
- W3215747241 magId "3215747241" @default.
- W3215747241 workType "article" @default.