Matches in SemOpenAlex for { <https://semopenalex.org/work/W3215766836> ?p ?o ?g. }
- W3215766836 endingPage "3545" @default.
- W3215766836 startingPage "3532" @default.
- W3215766836 abstract "Motion estimation is a fundamental step in dynamic medical image processing for the assessment of target organ anatomy and function. However, existing image-based motion estimation methods, which optimize the motion field by evaluating the local image similarity, are prone to produce implausible estimation, especially in the presence of large motion. In addition, the correct anatomical topology is difficult to be preserved as the image global context is not well incorporated into motion estimation. In this study, we provide a novel motion estimation framework of dense-sparse-dense (DSD), which comprises two stages. In the first stage, we process the raw dense image to extract sparse landmarks to represent the target organ's anatomical topology, and discard the redundant information that is unnecessary for motion estimation. For this purpose, we introduce an unsupervised 3-D landmark detection network to extract spatially sparse but representative landmarks for the target organ's motion estimation. In the second stage, we derive the sparse motion displacement from the extracted sparse landmarks of two images of different time points. Then, we present a motion reconstruction network to construct the motion field by projecting the sparse landmarks' displacement back into the dense image domain. Furthermore, we employ the estimated motion field from our two-stage DSD framework as initialization and boost the motion estimation quality in light-weight yet effective iterative optimization. We evaluate our method on two dynamic medical imaging tasks to model cardiac motion and lung respiratory motion, respectively. Our method has produced superior motion estimation accuracy compared to the existing comparative methods. Besides, the extensive experimental results demonstrate that our solution can extract well-representative anatomical landmarks without any requirement of manual annotation. Our code is publicly available online: https://github.com/yyguo-sjtu/DSD-3D-Unsupervised-Landmark-Detection-Based-Motion-Estimation." @default.
- W3215766836 created "2021-12-06" @default.
- W3215766836 creator A5015039086 @default.
- W3215766836 creator A5025946892 @default.
- W3215766836 creator A5026400835 @default.
- W3215766836 creator A5041932034 @default.
- W3215766836 creator A5046225712 @default.
- W3215766836 creator A5049931231 @default.
- W3215766836 creator A5066606190 @default.
- W3215766836 creator A5076412381 @default.
- W3215766836 creator A5080516683 @default.
- W3215766836 date "2023-06-01" @default.
- W3215766836 modified "2023-10-17" @default.
- W3215766836 title "Unsupervised Landmark Detection-Based Spatiotemporal Motion Estimation for 4-D Dynamic Medical Images" @default.
- W3215766836 cites W1487997024 @default.
- W3215766836 cites W1901129140 @default.
- W3215766836 cites W1982851590 @default.
- W3215766836 cites W2009636029 @default.
- W3215766836 cites W2011390473 @default.
- W3215766836 cites W2016650517 @default.
- W3215766836 cites W2032705742 @default.
- W3215766836 cites W2041702240 @default.
- W3215766836 cites W2055928770 @default.
- W3215766836 cites W2062462385 @default.
- W3215766836 cites W2068034065 @default.
- W3215766836 cites W2094711692 @default.
- W3215766836 cites W2103857226 @default.
- W3215766836 cites W2107956652 @default.
- W3215766836 cites W2112521440 @default.
- W3215766836 cites W2115167851 @default.
- W3215766836 cites W2136145485 @default.
- W3215766836 cites W2140308441 @default.
- W3215766836 cites W2140711847 @default.
- W3215766836 cites W2141085506 @default.
- W3215766836 cites W2145174823 @default.
- W3215766836 cites W2462523589 @default.
- W3215766836 cites W2468317448 @default.
- W3215766836 cites W2557368531 @default.
- W3215766836 cites W2563619737 @default.
- W3215766836 cites W2604920239 @default.
- W3215766836 cites W2605100742 @default.
- W3215766836 cites W2608822622 @default.
- W3215766836 cites W2740020909 @default.
- W3215766836 cites W2742540092 @default.
- W3215766836 cites W2752785527 @default.
- W3215766836 cites W2753461941 @default.
- W3215766836 cites W2758830961 @default.
- W3215766836 cites W2768357135 @default.
- W3215766836 cites W2784144698 @default.
- W3215766836 cites W2804047627 @default.
- W3215766836 cites W2835003784 @default.
- W3215766836 cites W2847088336 @default.
- W3215766836 cites W2891590469 @default.
- W3215766836 cites W2894950214 @default.
- W3215766836 cites W2908230750 @default.
- W3215766836 cites W2929508119 @default.
- W3215766836 cites W2943825593 @default.
- W3215766836 cites W2952074561 @default.
- W3215766836 cites W2963168844 @default.
- W3215766836 cites W2963781481 @default.
- W3215766836 cites W2965867178 @default.
- W3215766836 cites W2969810168 @default.
- W3215766836 cites W2995848654 @default.
- W3215766836 cites W3035538852 @default.
- W3215766836 cites W3035656430 @default.
- W3215766836 cites W3095509699 @default.
- W3215766836 cites W3099561884 @default.
- W3215766836 cites W3104164805 @default.
- W3215766836 cites W3147034138 @default.
- W3215766836 cites W4233762729 @default.
- W3215766836 doi "https://doi.org/10.1109/tcyb.2021.3126817" @default.
- W3215766836 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34851845" @default.
- W3215766836 hasPublicationYear "2023" @default.
- W3215766836 type Work @default.
- W3215766836 sameAs 3215766836 @default.
- W3215766836 citedByCount "1" @default.
- W3215766836 countsByYear W32157668362023 @default.
- W3215766836 crossrefType "journal-article" @default.
- W3215766836 hasAuthorship W3215766836A5015039086 @default.
- W3215766836 hasAuthorship W3215766836A5025946892 @default.
- W3215766836 hasAuthorship W3215766836A5026400835 @default.
- W3215766836 hasAuthorship W3215766836A5041932034 @default.
- W3215766836 hasAuthorship W3215766836A5046225712 @default.
- W3215766836 hasAuthorship W3215766836A5049931231 @default.
- W3215766836 hasAuthorship W3215766836A5066606190 @default.
- W3215766836 hasAuthorship W3215766836A5076412381 @default.
- W3215766836 hasAuthorship W3215766836A5080516683 @default.
- W3215766836 hasBestOaLocation W32157668361 @default.
- W3215766836 hasConcept C10161872 @default.
- W3215766836 hasConcept C104114177 @default.
- W3215766836 hasConcept C114466953 @default.
- W3215766836 hasConcept C124774092 @default.
- W3215766836 hasConcept C146159030 @default.
- W3215766836 hasConcept C153180895 @default.
- W3215766836 hasConcept C154945302 @default.
- W3215766836 hasConcept C166957645 @default.
- W3215766836 hasConcept C199360897 @default.
- W3215766836 hasConcept C205649164 @default.