Matches in SemOpenAlex for { <https://semopenalex.org/work/W3215770360> ?p ?o ?g. }
- W3215770360 endingPage "107343" @default.
- W3215770360 startingPage "107343" @default.
- W3215770360 abstract "Over the past decade, there has been an increasing research on the use of machine learning tools for estimating reference crop evapotranspiration (ETo). However, due to the data-hungry nature of the machine learning models, all of these researches are not suitable for regions with limited data supply. This study aims to provide a breakthrough for the bottleneck through coupling of the inter-model ensemble with various data management schemes. The Bayesian modeling approach and a non-linear neural ensemble based inter-model ensemble (BMA-E and NNE-E) were developed locally with data from five different meteorological stations in the Peninsular Malaysia. The NNE-E was found to be highly robust spatially, whereby it can be used to estimate daily ETo accurately at other stations, even though with reduced input meteorological parameters. However, the performances of the locally trained models were found wanting and were fluctuating violently. This was resolved through creating a data pool that include the data from all stations and developing a universal NNE. By following the proposed scheme of things, the daily ETo can be easily estimated across the whole Peninsular Malaysia. This being, without the need for historical data and new models at estimation site." @default.
- W3215770360 created "2021-12-06" @default.
- W3215770360 creator A5051234103 @default.
- W3215770360 creator A5069455833 @default.
- W3215770360 creator A5081710674 @default.
- W3215770360 date "2022-03-01" @default.
- W3215770360 modified "2023-10-18" @default.
- W3215770360 title "Resolving data-hungry nature of machine learning reference evapotranspiration estimating models using inter-model ensembles with various data management schemes" @default.
- W3215770360 cites W1109078837 @default.
- W3215770360 cites W1469381315 @default.
- W3215770360 cites W1977356164 @default.
- W3215770360 cites W1978128908 @default.
- W3215770360 cites W2003696872 @default.
- W3215770360 cites W2024585884 @default.
- W3215770360 cites W2037129041 @default.
- W3215770360 cites W2047445539 @default.
- W3215770360 cites W2085281262 @default.
- W3215770360 cites W2290883490 @default.
- W3215770360 cites W2411556712 @default.
- W3215770360 cites W2493022751 @default.
- W3215770360 cites W2555645875 @default.
- W3215770360 cites W2603417106 @default.
- W3215770360 cites W2769217302 @default.
- W3215770360 cites W2788871719 @default.
- W3215770360 cites W2796175895 @default.
- W3215770360 cites W2808724894 @default.
- W3215770360 cites W2887176132 @default.
- W3215770360 cites W2889246260 @default.
- W3215770360 cites W2893011787 @default.
- W3215770360 cites W2897929979 @default.
- W3215770360 cites W2920819147 @default.
- W3215770360 cites W2921467030 @default.
- W3215770360 cites W2934773216 @default.
- W3215770360 cites W2938880353 @default.
- W3215770360 cites W2961472717 @default.
- W3215770360 cites W2971270198 @default.
- W3215770360 cites W2974473464 @default.
- W3215770360 cites W2977702035 @default.
- W3215770360 cites W2979088942 @default.
- W3215770360 cites W2980653736 @default.
- W3215770360 cites W2993676729 @default.
- W3215770360 cites W2998282061 @default.
- W3215770360 cites W2998895100 @default.
- W3215770360 cites W2999491882 @default.
- W3215770360 cites W3011744717 @default.
- W3215770360 cites W3016654606 @default.
- W3215770360 cites W3036299832 @default.
- W3215770360 cites W3043392635 @default.
- W3215770360 cites W3081241543 @default.
- W3215770360 cites W3081335492 @default.
- W3215770360 cites W3089355202 @default.
- W3215770360 cites W3090808744 @default.
- W3215770360 cites W3092192795 @default.
- W3215770360 cites W3096916113 @default.
- W3215770360 cites W3097935099 @default.
- W3215770360 cites W3117520445 @default.
- W3215770360 cites W3131536296 @default.
- W3215770360 cites W3133716199 @default.
- W3215770360 cites W3168760778 @default.
- W3215770360 cites W3169963517 @default.
- W3215770360 cites W3173235060 @default.
- W3215770360 cites W3185676196 @default.
- W3215770360 doi "https://doi.org/10.1016/j.agwat.2021.107343" @default.
- W3215770360 hasPublicationYear "2022" @default.
- W3215770360 type Work @default.
- W3215770360 sameAs 3215770360 @default.
- W3215770360 citedByCount "9" @default.
- W3215770360 countsByYear W32157703602022 @default.
- W3215770360 countsByYear W32157703602023 @default.
- W3215770360 crossrefType "journal-article" @default.
- W3215770360 hasAuthorship W3215770360A5051234103 @default.
- W3215770360 hasAuthorship W3215770360A5069455833 @default.
- W3215770360 hasAuthorship W3215770360A5081710674 @default.
- W3215770360 hasConcept C107673813 @default.
- W3215770360 hasConcept C119857082 @default.
- W3215770360 hasConcept C119898033 @default.
- W3215770360 hasConcept C124101348 @default.
- W3215770360 hasConcept C134306372 @default.
- W3215770360 hasConcept C149635348 @default.
- W3215770360 hasConcept C154945302 @default.
- W3215770360 hasConcept C176783924 @default.
- W3215770360 hasConcept C18903297 @default.
- W3215770360 hasConcept C2780513914 @default.
- W3215770360 hasConcept C33923547 @default.
- W3215770360 hasConcept C41008148 @default.
- W3215770360 hasConcept C45942800 @default.
- W3215770360 hasConcept C50644808 @default.
- W3215770360 hasConcept C77618280 @default.
- W3215770360 hasConcept C86803240 @default.
- W3215770360 hasConceptScore W3215770360C107673813 @default.
- W3215770360 hasConceptScore W3215770360C119857082 @default.
- W3215770360 hasConceptScore W3215770360C119898033 @default.
- W3215770360 hasConceptScore W3215770360C124101348 @default.
- W3215770360 hasConceptScore W3215770360C134306372 @default.
- W3215770360 hasConceptScore W3215770360C149635348 @default.
- W3215770360 hasConceptScore W3215770360C154945302 @default.
- W3215770360 hasConceptScore W3215770360C176783924 @default.
- W3215770360 hasConceptScore W3215770360C18903297 @default.