Matches in SemOpenAlex for { <https://semopenalex.org/work/W3215780519> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W3215780519 endingPage "8" @default.
- W3215780519 startingPage "1" @default.
- W3215780519 abstract "This study aimed to analyze the effect of the deep learning algorithm on ultrasound elastography on the treatment of cervical cancer with clustered regularly interspaced short palindromic repeats (CRISPR) short hairpin ribonucleic acid (shRNA) nanoparticles, aiming to provide a reference for the clinical application of deep learning to analyze the therapeutic effect of the disease. In this study, CRISPR and shRNA plasmid nanoparticle drugs were used to treat 55 patients with cervical cancer in the experimental group, and normal saline was injected to another 53 patients in the control group, so compare the effect of nanoparticles in the treatment of cervical cancer. Professional doctors and the recurrent neural network (RNN) intelligent algorithm were used to score cervical cancer based on the ultrasound elastograph images by taking blue, green, and red (BGR) as diagnosis criteria. As a result, the experimental group had a total of 217 points before drug administration and a total of 224 points after drug administration. Each patient had an average increase of 0.13 points. The control group had a total of 200 points before drug administration and a total of 223 points after drug administration, and each patient had an average increase of 0.43 points. The experimental group was obviously different from the control group ( <math xmlns=http://www.w3.org/1998/Math/MathML id=M1> <mi>P</mi> <mo><</mo> <mn>0.05</mn> </math> ). Each tissue image output by the RNN was clearer than the original image, and the score given by intelligent calculation was faster than that of professional doctors. The monitoring effect of the deep learning RNN intelligent algorithm on the therapeutic effect of nanomedicine was analyzed. It was found that the average accuracy of the experimental group and the control group was 98.95% and 90.34%, respectively; and the experimental group was greatly different from the control group ( <math xmlns=http://www.w3.org/1998/Math/MathML id=M2> <mi>P</mi> <mo><</mo> <mn>0.05</mn> </math> ). In short, nano-CRISPR and shRNA drugs had remarkable effects on the treatment of cervical cancer, and the scores given by the deep learning intelligent algorithm were faster and more accurate, which provided theoretical guidance for the clinical application of deep learning algorithms to analyze the treatment effects of diseases." @default.
- W3215780519 created "2021-12-06" @default.
- W3215780519 creator A5027558339 @default.
- W3215780519 creator A5033098447 @default.
- W3215780519 creator A5051405817 @default.
- W3215780519 date "2021-11-29" @default.
- W3215780519 modified "2023-09-27" @default.
- W3215780519 title "Ultrasound Elastography under Deep Learning Algorithm to Analyze the Therapeutic Effect of Clustered Regularly Interspaced Short Palindromic Repeats Short Hairpin Ribonucleic Acid Nanoparticles on Cervical Cancer" @default.
- W3215780519 cites W2555048663 @default.
- W3215780519 cites W2766753913 @default.
- W3215780519 cites W2783317437 @default.
- W3215780519 cites W2801458876 @default.
- W3215780519 cites W2883741661 @default.
- W3215780519 cites W2884658837 @default.
- W3215780519 cites W2910429314 @default.
- W3215780519 cites W2936340812 @default.
- W3215780519 cites W2943623959 @default.
- W3215780519 cites W2944089502 @default.
- W3215780519 cites W2946901414 @default.
- W3215780519 cites W2948626020 @default.
- W3215780519 cites W2954134838 @default.
- W3215780519 cites W2977910349 @default.
- W3215780519 cites W2991291078 @default.
- W3215780519 cites W3025998787 @default.
- W3215780519 cites W3085262771 @default.
- W3215780519 cites W3094347233 @default.
- W3215780519 cites W3096359655 @default.
- W3215780519 cites W3115774521 @default.
- W3215780519 doi "https://doi.org/10.1155/2021/7538984" @default.
- W3215780519 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34880980" @default.
- W3215780519 hasPublicationYear "2021" @default.
- W3215780519 type Work @default.
- W3215780519 sameAs 3215780519 @default.
- W3215780519 citedByCount "0" @default.
- W3215780519 crossrefType "journal-article" @default.
- W3215780519 hasAuthorship W3215780519A5027558339 @default.
- W3215780519 hasAuthorship W3215780519A5033098447 @default.
- W3215780519 hasAuthorship W3215780519A5051405817 @default.
- W3215780519 hasBestOaLocation W32157805191 @default.
- W3215780519 hasConcept C102652120 @default.
- W3215780519 hasConcept C104317684 @default.
- W3215780519 hasConcept C11413529 @default.
- W3215780519 hasConcept C121608353 @default.
- W3215780519 hasConcept C126322002 @default.
- W3215780519 hasConcept C126838900 @default.
- W3215780519 hasConcept C141071460 @default.
- W3215780519 hasConcept C143753070 @default.
- W3215780519 hasConcept C190232843 @default.
- W3215780519 hasConcept C2777397205 @default.
- W3215780519 hasConcept C2778220009 @default.
- W3215780519 hasConcept C41008148 @default.
- W3215780519 hasConcept C44667518 @default.
- W3215780519 hasConcept C55493867 @default.
- W3215780519 hasConcept C67705224 @default.
- W3215780519 hasConcept C71924100 @default.
- W3215780519 hasConcept C86803240 @default.
- W3215780519 hasConcept C98108389 @default.
- W3215780519 hasConceptScore W3215780519C102652120 @default.
- W3215780519 hasConceptScore W3215780519C104317684 @default.
- W3215780519 hasConceptScore W3215780519C11413529 @default.
- W3215780519 hasConceptScore W3215780519C121608353 @default.
- W3215780519 hasConceptScore W3215780519C126322002 @default.
- W3215780519 hasConceptScore W3215780519C126838900 @default.
- W3215780519 hasConceptScore W3215780519C141071460 @default.
- W3215780519 hasConceptScore W3215780519C143753070 @default.
- W3215780519 hasConceptScore W3215780519C190232843 @default.
- W3215780519 hasConceptScore W3215780519C2777397205 @default.
- W3215780519 hasConceptScore W3215780519C2778220009 @default.
- W3215780519 hasConceptScore W3215780519C41008148 @default.
- W3215780519 hasConceptScore W3215780519C44667518 @default.
- W3215780519 hasConceptScore W3215780519C55493867 @default.
- W3215780519 hasConceptScore W3215780519C67705224 @default.
- W3215780519 hasConceptScore W3215780519C71924100 @default.
- W3215780519 hasConceptScore W3215780519C86803240 @default.
- W3215780519 hasConceptScore W3215780519C98108389 @default.
- W3215780519 hasFunder F4320311028 @default.
- W3215780519 hasLocation W32157805191 @default.
- W3215780519 hasLocation W32157805192 @default.
- W3215780519 hasLocation W32157805193 @default.
- W3215780519 hasLocation W32157805194 @default.
- W3215780519 hasOpenAccess W3215780519 @default.
- W3215780519 hasPrimaryLocation W32157805191 @default.
- W3215780519 hasRelatedWork W2004311938 @default.
- W3215780519 hasRelatedWork W2081411679 @default.
- W3215780519 hasRelatedWork W2413909071 @default.
- W3215780519 hasRelatedWork W2415978481 @default.
- W3215780519 hasRelatedWork W2887207555 @default.
- W3215780519 hasRelatedWork W3001439861 @default.
- W3215780519 hasRelatedWork W4243873903 @default.
- W3215780519 hasRelatedWork W4250504818 @default.
- W3215780519 hasRelatedWork W4256679810 @default.
- W3215780519 hasRelatedWork W4365999895 @default.
- W3215780519 hasVolume "2021" @default.
- W3215780519 isParatext "false" @default.
- W3215780519 isRetracted "false" @default.
- W3215780519 magId "3215780519" @default.
- W3215780519 workType "article" @default.