Matches in SemOpenAlex for { <https://semopenalex.org/work/W3215788501> ?p ?o ?g. }
- W3215788501 abstract "Given the rapid development of 3D scanners, point clouds are becoming popular in AI-driven machines. However, point cloud data is inherently sparse and irregular, causing significant difficulties for machine perception. In this work, we focus on the point cloud upsampling task that intends to generate dense high-fidelity point clouds from sparse input data. Specifically, to activate the transformer's strong capability in representing features, we develop a new variant of a multi-head self-attention structure to enhance both point-wise and channel-wise relations of the feature map. In addition, we leverage a positional fusion block to comprehensively capture the local context of point cloud data, providing more position-related information about the scattered points. As the first transformer model introduced for point cloud upsampling, we demonstrate the outstanding performance of our approach by comparing with the state-of-the-art CNN-based methods on different benchmarks quantitatively and qualitatively." @default.
- W3215788501 created "2021-12-06" @default.
- W3215788501 creator A5010706327 @default.
- W3215788501 creator A5072837153 @default.
- W3215788501 creator A5084633048 @default.
- W3215788501 date "2021-11-23" @default.
- W3215788501 modified "2023-09-24" @default.
- W3215788501 title "PU-Transformer: Point Cloud Upsampling Transformer" @default.
- W3215788501 cites W1644641054 @default.
- W3215788501 cites W1665214252 @default.
- W3215788501 cites W1885185971 @default.
- W3215788501 cites W1987985833 @default.
- W3215788501 cites W1992642990 @default.
- W3215788501 cites W2037402385 @default.
- W3215788501 cites W2069479606 @default.
- W3215788501 cites W2084595284 @default.
- W3215788501 cites W2099471712 @default.
- W3215788501 cites W2158455546 @default.
- W3215788501 cites W2190691619 @default.
- W3215788501 cites W2242218935 @default.
- W3215788501 cites W2476548250 @default.
- W3215788501 cites W2560609797 @default.
- W3215788501 cites W2586114507 @default.
- W3215788501 cites W2594519801 @default.
- W3215788501 cites W2609719703 @default.
- W3215788501 cites W2614059183 @default.
- W3215788501 cites W2788158258 @default.
- W3215788501 cites W2886499109 @default.
- W3215788501 cites W2949117887 @default.
- W3215788501 cites W2950493473 @default.
- W3215788501 cites W2963091558 @default.
- W3215788501 cites W2963121255 @default.
- W3215788501 cites W2963125977 @default.
- W3215788501 cites W2963390820 @default.
- W3215788501 cites W2963403868 @default.
- W3215788501 cites W2963509914 @default.
- W3215788501 cites W2963680153 @default.
- W3215788501 cites W2979750740 @default.
- W3215788501 cites W2988715931 @default.
- W3215788501 cites W2990045899 @default.
- W3215788501 cites W2991216808 @default.
- W3215788501 cites W2997337685 @default.
- W3215788501 cites W3012494314 @default.
- W3215788501 cites W3034429258 @default.
- W3215788501 cites W3034552520 @default.
- W3215788501 cites W3035022492 @default.
- W3215788501 cites W3035574168 @default.
- W3215788501 cites W3039448353 @default.
- W3215788501 cites W3040726448 @default.
- W3215788501 cites W3092462694 @default.
- W3215788501 cites W3094502228 @default.
- W3215788501 cites W3112996878 @default.
- W3215788501 cites W3118806719 @default.
- W3215788501 cites W3119997354 @default.
- W3215788501 cites W3153465022 @default.
- W3215788501 cites W3157424380 @default.
- W3215788501 cites W3171125843 @default.
- W3215788501 cites W3171215128 @default.
- W3215788501 cites W3175676582 @default.
- W3215788501 cites W3184736166 @default.
- W3215788501 cites W3192980497 @default.
- W3215788501 cites W3195219304 @default.
- W3215788501 cites W3202406646 @default.
- W3215788501 cites W3203038692 @default.
- W3215788501 cites W3203890361 @default.
- W3215788501 cites W3203898101 @default.
- W3215788501 doi "https://doi.org/10.48550/arxiv.2111.12242" @default.
- W3215788501 hasPublicationYear "2021" @default.
- W3215788501 type Work @default.
- W3215788501 sameAs 3215788501 @default.
- W3215788501 citedByCount "0" @default.
- W3215788501 crossrefType "posted-content" @default.
- W3215788501 hasAuthorship W3215788501A5010706327 @default.
- W3215788501 hasAuthorship W3215788501A5072837153 @default.
- W3215788501 hasAuthorship W3215788501A5084633048 @default.
- W3215788501 hasBestOaLocation W32157885011 @default.
- W3215788501 hasConcept C110384440 @default.
- W3215788501 hasConcept C111919701 @default.
- W3215788501 hasConcept C115961682 @default.
- W3215788501 hasConcept C119599485 @default.
- W3215788501 hasConcept C127413603 @default.
- W3215788501 hasConcept C131979681 @default.
- W3215788501 hasConcept C153083717 @default.
- W3215788501 hasConcept C154945302 @default.
- W3215788501 hasConcept C165801399 @default.
- W3215788501 hasConcept C2776459999 @default.
- W3215788501 hasConcept C31972630 @default.
- W3215788501 hasConcept C41008148 @default.
- W3215788501 hasConcept C66322947 @default.
- W3215788501 hasConcept C76155785 @default.
- W3215788501 hasConcept C79974875 @default.
- W3215788501 hasConceptScore W3215788501C110384440 @default.
- W3215788501 hasConceptScore W3215788501C111919701 @default.
- W3215788501 hasConceptScore W3215788501C115961682 @default.
- W3215788501 hasConceptScore W3215788501C119599485 @default.
- W3215788501 hasConceptScore W3215788501C127413603 @default.
- W3215788501 hasConceptScore W3215788501C131979681 @default.
- W3215788501 hasConceptScore W3215788501C153083717 @default.
- W3215788501 hasConceptScore W3215788501C154945302 @default.
- W3215788501 hasConceptScore W3215788501C165801399 @default.