Matches in SemOpenAlex for { <https://semopenalex.org/work/W3215815403> ?p ?o ?g. }
- W3215815403 endingPage "4820" @default.
- W3215815403 startingPage "4820" @default.
- W3215815403 abstract "Based on deep learning, this paper proposes a new hybrid neural network model, a recurrent deep neural network using a feature attention mechanism (FA-RDN) for GNSS-R global sea surface wind speed retrieval. FA-RDN can process data from the Cyclone Global Navigation Satellite System (CYGNSS) satellite mission, including characteristics of the signal, spatio-temporal, geometry, and instrument. FA-RDN can receive data extended in temporal dimension and mine the temporal correlation information of features through the long-short term memory (LSTM) neural network layer. A feature attention mechanism is also added to improve the model’s computational efficiency. To evaluate the model performance, we designed comparison and validation experiments for the retrieval accuracy, enhancement effect, and stability of FA-RDN by comparing the evaluation criteria results. The results show that the wind speed retrieval root mean square error (RMSE) of the FA-RDN model can reach 1.45 m/s, 10.38%, 6.58%, 13.28%, 17.89%, 20.26%, and 23.14% higher than that of Backpropagation Neural Network (BPNN), Recurrent Neural Network (RNN), Artificial Neural Network (ANN), Random Forests (RF), eXtreme Gradient Boosting (XGBoost), and Support Vector Regression (SVR), respectively, confirming the feasibility and effectiveness of the designed method. At the same time, the designed model has better stability and applicability, serving as a new research idea of data mining and feature selection, as well as a reference model for GNSS-R-based sea surface wind speed retrieval." @default.
- W3215815403 created "2021-12-06" @default.
- W3215815403 creator A5003191730 @default.
- W3215815403 creator A5006413981 @default.
- W3215815403 creator A5009194677 @default.
- W3215815403 creator A5019424514 @default.
- W3215815403 creator A5037587360 @default.
- W3215815403 creator A5041093991 @default.
- W3215815403 creator A5041657651 @default.
- W3215815403 creator A5047721804 @default.
- W3215815403 creator A5056864848 @default.
- W3215815403 creator A5079500908 @default.
- W3215815403 creator A5085463374 @default.
- W3215815403 date "2021-11-27" @default.
- W3215815403 modified "2023-10-12" @default.
- W3215815403 title "FA-RDN: A Hybrid Neural Network on GNSS-R Sea Surface Wind Speed Retrieval" @default.
- W3215815403 cites W1840723247 @default.
- W3215815403 cites W1923563908 @default.
- W3215815403 cites W1980688822 @default.
- W3215815403 cites W2022050692 @default.
- W3215815403 cites W2022585320 @default.
- W3215815403 cites W2036393665 @default.
- W3215815403 cites W2064675550 @default.
- W3215815403 cites W2102049927 @default.
- W3215815403 cites W2103598124 @default.
- W3215815403 cites W2107878631 @default.
- W3215815403 cites W2127392264 @default.
- W3215815403 cites W2127970545 @default.
- W3215815403 cites W2132424470 @default.
- W3215815403 cites W2164364459 @default.
- W3215815403 cites W2178868590 @default.
- W3215815403 cites W2329472099 @default.
- W3215815403 cites W2528581612 @default.
- W3215815403 cites W2605990263 @default.
- W3215815403 cites W2801770031 @default.
- W3215815403 cites W2803212219 @default.
- W3215815403 cites W2885395251 @default.
- W3215815403 cites W2889323772 @default.
- W3215815403 cites W2897797152 @default.
- W3215815403 cites W2954482899 @default.
- W3215815403 cites W2968955748 @default.
- W3215815403 cites W2978354175 @default.
- W3215815403 cites W2985517703 @default.
- W3215815403 cites W3001364574 @default.
- W3215815403 cites W3004591201 @default.
- W3215815403 cites W3008060144 @default.
- W3215815403 cites W3015987273 @default.
- W3215815403 cites W3020649642 @default.
- W3215815403 cites W3037068793 @default.
- W3215815403 cites W3048958685 @default.
- W3215815403 cites W3083369567 @default.
- W3215815403 cites W3102476541 @default.
- W3215815403 doi "https://doi.org/10.3390/rs13234820" @default.
- W3215815403 hasPublicationYear "2021" @default.
- W3215815403 type Work @default.
- W3215815403 sameAs 3215815403 @default.
- W3215815403 citedByCount "6" @default.
- W3215815403 countsByYear W32158154032022 @default.
- W3215815403 countsByYear W32158154032023 @default.
- W3215815403 crossrefType "journal-article" @default.
- W3215815403 hasAuthorship W3215815403A5003191730 @default.
- W3215815403 hasAuthorship W3215815403A5006413981 @default.
- W3215815403 hasAuthorship W3215815403A5009194677 @default.
- W3215815403 hasAuthorship W3215815403A5019424514 @default.
- W3215815403 hasAuthorship W3215815403A5037587360 @default.
- W3215815403 hasAuthorship W3215815403A5041093991 @default.
- W3215815403 hasAuthorship W3215815403A5041657651 @default.
- W3215815403 hasAuthorship W3215815403A5047721804 @default.
- W3215815403 hasAuthorship W3215815403A5056864848 @default.
- W3215815403 hasAuthorship W3215815403A5079500908 @default.
- W3215815403 hasAuthorship W3215815403A5085463374 @default.
- W3215815403 hasBestOaLocation W32158154031 @default.
- W3215815403 hasConcept C105795698 @default.
- W3215815403 hasConcept C121332964 @default.
- W3215815403 hasConcept C12267149 @default.
- W3215815403 hasConcept C139945424 @default.
- W3215815403 hasConcept C14279187 @default.
- W3215815403 hasConcept C147168706 @default.
- W3215815403 hasConcept C153294291 @default.
- W3215815403 hasConcept C154945302 @default.
- W3215815403 hasConcept C155032097 @default.
- W3215815403 hasConcept C161067210 @default.
- W3215815403 hasConcept C33923547 @default.
- W3215815403 hasConcept C41008148 @default.
- W3215815403 hasConcept C50644808 @default.
- W3215815403 hasConcept C60229501 @default.
- W3215815403 hasConcept C76155785 @default.
- W3215815403 hasConceptScore W3215815403C105795698 @default.
- W3215815403 hasConceptScore W3215815403C121332964 @default.
- W3215815403 hasConceptScore W3215815403C12267149 @default.
- W3215815403 hasConceptScore W3215815403C139945424 @default.
- W3215815403 hasConceptScore W3215815403C14279187 @default.
- W3215815403 hasConceptScore W3215815403C147168706 @default.
- W3215815403 hasConceptScore W3215815403C153294291 @default.
- W3215815403 hasConceptScore W3215815403C154945302 @default.
- W3215815403 hasConceptScore W3215815403C155032097 @default.
- W3215815403 hasConceptScore W3215815403C161067210 @default.
- W3215815403 hasConceptScore W3215815403C33923547 @default.