Matches in SemOpenAlex for { <https://semopenalex.org/work/W3215869426> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W3215869426 abstract "Chronic kidney disease (CKD) is one of the severe diseases in which kidney functions are lost gradually over months to years. Though, in the early stages of CKD little to no symptoms can be seen, but the symptoms become much more visible at the later stages of the disease and in that stage, the treatments are expensive for developing and underdeveloped countries. Again, Machine Learning (ML) models can effectively help medical professionals to predict the disease correctly in the earlier stage. Therefore, the objectives of this research are firstly, to develop an ensemble-based machine learning model to predict CKD efficiently; and secondly, to develop a predictive a nalytic system based on the proposed ensemble model. To attain these objectives, twelve ML algorithms were explored on the open-sources dataset. Then, the performance of these algorithms was analyzed to fed into the ensemble voting classifier to select the best set of algorithms. As such, seven ML algorithms were selected based on their accuracy and false negative error to be fed into the ensemble voting classifier to predict CKD efficiently. The experimental results showed that the proposed ensemble machine learning model could detect CKD with 99.17% accuracy and zero false negative error. Finally, a usable predictive analytic system was developed integrating the proposed ensemble-based ML models." @default.
- W3215869426 created "2021-12-06" @default.
- W3215869426 creator A5020034218 @default.
- W3215869426 creator A5037023576 @default.
- W3215869426 creator A5046681246 @default.
- W3215869426 creator A5055312229 @default.
- W3215869426 creator A5084734743 @default.
- W3215869426 creator A5086513859 @default.
- W3215869426 date "2021-10-14" @default.
- W3215869426 modified "2023-10-10" @default.
- W3215869426 title "Development of a Predictive Analytic System for Chronic Kidney Disease using Ensemble-based Machine Learning" @default.
- W3215869426 cites W2894116934 @default.
- W3215869426 cites W2942796683 @default.
- W3215869426 cites W2970602317 @default.
- W3215869426 cites W2971795981 @default.
- W3215869426 cites W2982215737 @default.
- W3215869426 cites W2997177758 @default.
- W3215869426 cites W3001566861 @default.
- W3215869426 cites W3010087630 @default.
- W3215869426 cites W3011408237 @default.
- W3215869426 cites W3033515365 @default.
- W3215869426 cites W3124204551 @default.
- W3215869426 cites W3135028703 @default.
- W3215869426 doi "https://doi.org/10.1109/itms52826.2021.9615273" @default.
- W3215869426 hasPublicationYear "2021" @default.
- W3215869426 type Work @default.
- W3215869426 sameAs 3215869426 @default.
- W3215869426 citedByCount "4" @default.
- W3215869426 countsByYear W32158694262022 @default.
- W3215869426 countsByYear W32158694262023 @default.
- W3215869426 crossrefType "proceedings-article" @default.
- W3215869426 hasAuthorship W3215869426A5020034218 @default.
- W3215869426 hasAuthorship W3215869426A5037023576 @default.
- W3215869426 hasAuthorship W3215869426A5046681246 @default.
- W3215869426 hasAuthorship W3215869426A5055312229 @default.
- W3215869426 hasAuthorship W3215869426A5084734743 @default.
- W3215869426 hasAuthorship W3215869426A5086513859 @default.
- W3215869426 hasConcept C119857082 @default.
- W3215869426 hasConcept C119898033 @default.
- W3215869426 hasConcept C126322002 @default.
- W3215869426 hasConcept C136764020 @default.
- W3215869426 hasConcept C154945302 @default.
- W3215869426 hasConcept C17744445 @default.
- W3215869426 hasConcept C199539241 @default.
- W3215869426 hasConcept C2778653478 @default.
- W3215869426 hasConcept C2780615836 @default.
- W3215869426 hasConcept C41008148 @default.
- W3215869426 hasConcept C45942800 @default.
- W3215869426 hasConcept C520049643 @default.
- W3215869426 hasConcept C71924100 @default.
- W3215869426 hasConcept C94625758 @default.
- W3215869426 hasConcept C95623464 @default.
- W3215869426 hasConceptScore W3215869426C119857082 @default.
- W3215869426 hasConceptScore W3215869426C119898033 @default.
- W3215869426 hasConceptScore W3215869426C126322002 @default.
- W3215869426 hasConceptScore W3215869426C136764020 @default.
- W3215869426 hasConceptScore W3215869426C154945302 @default.
- W3215869426 hasConceptScore W3215869426C17744445 @default.
- W3215869426 hasConceptScore W3215869426C199539241 @default.
- W3215869426 hasConceptScore W3215869426C2778653478 @default.
- W3215869426 hasConceptScore W3215869426C2780615836 @default.
- W3215869426 hasConceptScore W3215869426C41008148 @default.
- W3215869426 hasConceptScore W3215869426C45942800 @default.
- W3215869426 hasConceptScore W3215869426C520049643 @default.
- W3215869426 hasConceptScore W3215869426C71924100 @default.
- W3215869426 hasConceptScore W3215869426C94625758 @default.
- W3215869426 hasConceptScore W3215869426C95623464 @default.
- W3215869426 hasLocation W32158694261 @default.
- W3215869426 hasOpenAccess W3215869426 @default.
- W3215869426 hasPrimaryLocation W32158694261 @default.
- W3215869426 hasRelatedWork W1514365828 @default.
- W3215869426 hasRelatedWork W1807784185 @default.
- W3215869426 hasRelatedWork W1909207154 @default.
- W3215869426 hasRelatedWork W2794896638 @default.
- W3215869426 hasRelatedWork W3101614107 @default.
- W3215869426 hasRelatedWork W3124390867 @default.
- W3215869426 hasRelatedWork W3149839747 @default.
- W3215869426 hasRelatedWork W3202800081 @default.
- W3215869426 hasRelatedWork W3204228978 @default.
- W3215869426 hasRelatedWork W45170056 @default.
- W3215869426 isParatext "false" @default.
- W3215869426 isRetracted "false" @default.
- W3215869426 magId "3215869426" @default.
- W3215869426 workType "article" @default.