Matches in SemOpenAlex for { <https://semopenalex.org/work/W3215896585> ?p ?o ?g. }
- W3215896585 endingPage "112" @default.
- W3215896585 startingPage "81" @default.
- W3215896585 abstract "Abstract Motivated by the Coronavirus Disease (COVID-19) pandemic, which is due to the SARS-CoV-2 virus, and the important problem of forecasting the number of daily deaths and the number of cumulative deaths, this paper examines the construction of prediction regions or intervals under the no-covariate or intercept-only Poisson model, the Poisson regression model, and a new over-dispersed Poisson regression model. These models are useful for settings with events of interest that are rare. For the no-covariate Poisson and the Poisson regression model, several prediction regions are developed and their performances are compared through simulation studies. The methods are applied to the problem of forecasting the number of daily deaths and the number of cumulative deaths in the United States (US) due to COVID-19. To examine their predictive accuracy in light of what actually happened, daily deaths data until May 15, 2020 were used to forecast cumulative deaths by June 1, 2020. It was observed that there is over-dispersion in the observed data relative to the Poisson regression model. A novel over-dispersed Poisson regression model is therefore proposed. This new model, which is distinct from the negative binomial regression (NBR) model, builds on frailty ideas in Survival Analysis and over-dispersion is quantified through an additional parameter. It has the flavor of a discrete measurement error model and with a viable physical interpretation in contrast to the NBR model. The Poisson regression model is a hidden model in this over-dispersed Poisson regression model, obtained as a limiting case when the over-dispersion parameter increases to infinity. A prediction region for the cumulative number of US deaths due to COVID-19 by October 1, 2020, given the data until September 1, 2020, is presented. Realized daily and cumulative deaths values from September 1st until September 25th are compared to the prediction region limits. Finally, the paper discusses limitations of the proposed procedures and mentions open research problems. It also pinpoints dangers and pitfalls when forecasting on a long horizon, especially during a pandemic where events, both foreseen and unforeseen, could impact point predictions and prediction regions." @default.
- W3215896585 created "2021-12-06" @default.
- W3215896585 creator A5027321594 @default.
- W3215896585 creator A5042128231 @default.
- W3215896585 creator A5064952825 @default.
- W3215896585 creator A5084473082 @default.
- W3215896585 date "2021-01-01" @default.
- W3215896585 modified "2023-10-07" @default.
- W3215896585 title "Prediction Regions for Poisson and Over-Dispersed Poisson Regression Models with Applications in Forecasting the Number of Deaths during the COVID-19 Pandemic" @default.
- W3215896585 cites W1510317613 @default.
- W3215896585 cites W1607202247 @default.
- W3215896585 cites W1969953591 @default.
- W3215896585 cites W1973628995 @default.
- W3215896585 cites W1979663020 @default.
- W3215896585 cites W1979771143 @default.
- W3215896585 cites W2058882880 @default.
- W3215896585 cites W2071886491 @default.
- W3215896585 cites W2108715295 @default.
- W3215896585 cites W2116100710 @default.
- W3215896585 cites W2136927639 @default.
- W3215896585 cites W2145860152 @default.
- W3215896585 cites W2426309867 @default.
- W3215896585 cites W2593505765 @default.
- W3215896585 cites W2609118784 @default.
- W3215896585 cites W2753481132 @default.
- W3215896585 cites W2753666478 @default.
- W3215896585 cites W2797487500 @default.
- W3215896585 cites W2963969791 @default.
- W3215896585 cites W2965922425 @default.
- W3215896585 cites W3026165955 @default.
- W3215896585 cites W3132953822 @default.
- W3215896585 cites W4229955888 @default.
- W3215896585 cites W4240874411 @default.
- W3215896585 cites W4292027009 @default.
- W3215896585 cites W4298872162 @default.
- W3215896585 cites W4301861531 @default.
- W3215896585 doi "https://doi.org/10.1515/stat-2020-0106" @default.
- W3215896585 hasPublicationYear "2021" @default.
- W3215896585 type Work @default.
- W3215896585 sameAs 3215896585 @default.
- W3215896585 citedByCount "4" @default.
- W3215896585 countsByYear W32158965852021 @default.
- W3215896585 countsByYear W32158965852022 @default.
- W3215896585 crossrefType "journal-article" @default.
- W3215896585 hasAuthorship W3215896585A5027321594 @default.
- W3215896585 hasAuthorship W3215896585A5042128231 @default.
- W3215896585 hasAuthorship W3215896585A5064952825 @default.
- W3215896585 hasAuthorship W3215896585A5084473082 @default.
- W3215896585 hasBestOaLocation W32158965851 @default.
- W3215896585 hasConcept C100906024 @default.
- W3215896585 hasConcept C105795698 @default.
- W3215896585 hasConcept C117236510 @default.
- W3215896585 hasConcept C119043178 @default.
- W3215896585 hasConcept C149782125 @default.
- W3215896585 hasConcept C152877465 @default.
- W3215896585 hasConcept C199335787 @default.
- W3215896585 hasConcept C2908647359 @default.
- W3215896585 hasConcept C33643355 @default.
- W3215896585 hasConcept C33923547 @default.
- W3215896585 hasConcept C71924100 @default.
- W3215896585 hasConcept C73269764 @default.
- W3215896585 hasConcept C83546350 @default.
- W3215896585 hasConcept C91025261 @default.
- W3215896585 hasConcept C99454951 @default.
- W3215896585 hasConceptScore W3215896585C100906024 @default.
- W3215896585 hasConceptScore W3215896585C105795698 @default.
- W3215896585 hasConceptScore W3215896585C117236510 @default.
- W3215896585 hasConceptScore W3215896585C119043178 @default.
- W3215896585 hasConceptScore W3215896585C149782125 @default.
- W3215896585 hasConceptScore W3215896585C152877465 @default.
- W3215896585 hasConceptScore W3215896585C199335787 @default.
- W3215896585 hasConceptScore W3215896585C2908647359 @default.
- W3215896585 hasConceptScore W3215896585C33643355 @default.
- W3215896585 hasConceptScore W3215896585C33923547 @default.
- W3215896585 hasConceptScore W3215896585C71924100 @default.
- W3215896585 hasConceptScore W3215896585C73269764 @default.
- W3215896585 hasConceptScore W3215896585C83546350 @default.
- W3215896585 hasConceptScore W3215896585C91025261 @default.
- W3215896585 hasConceptScore W3215896585C99454951 @default.
- W3215896585 hasIssue "1" @default.
- W3215896585 hasLocation W32158965851 @default.
- W3215896585 hasLocation W32158965852 @default.
- W3215896585 hasOpenAccess W3215896585 @default.
- W3215896585 hasPrimaryLocation W32158965851 @default.
- W3215896585 hasRelatedWork W1967330102 @default.
- W3215896585 hasRelatedWork W2047828157 @default.
- W3215896585 hasRelatedWork W2189104843 @default.
- W3215896585 hasRelatedWork W2556931687 @default.
- W3215896585 hasRelatedWork W2626535600 @default.
- W3215896585 hasRelatedWork W2885569989 @default.
- W3215896585 hasRelatedWork W3044493649 @default.
- W3215896585 hasRelatedWork W3134768068 @default.
- W3215896585 hasRelatedWork W3210390693 @default.
- W3215896585 hasRelatedWork W4210808373 @default.
- W3215896585 hasVolume "2" @default.
- W3215896585 isParatext "false" @default.
- W3215896585 isRetracted "false" @default.
- W3215896585 magId "3215896585" @default.