Matches in SemOpenAlex for { <https://semopenalex.org/work/W3215995087> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W3215995087 abstract "The identification of critical nodes in complex networks has been extensively studied, but little research has been done on the identification of critical nodes in attentional flow networks. Based on the massive online user behavior data provided by CNNIC, this paper proposed a key node identification model GAT-RL (Graph Attention Networks and Reinforcement Learning) by effectively using the node characteristics and the impact on the network after node removal. Firstly, a directed weighted attentional flow network was constructed based on online user behavior data. Then Graph Attention Networks (GATs) were used to aggregate the neighborhood features of each node in the network to obtain a vector representation of each node. Finally, the vector representation of each node is mapped to the corresponding quality score in combination with reinforcement learning. The critical node ranking is obtained based on the scores. Experiments show that when using the four methods of the GAT-RL model, H-index, degree centrality (Degree) and graph convolutional neural network (RCNN) to identify key nodes in the attention flow network, the GAT-RL model has the most rapid decrease in network connectivity during the identification process. When the node removal ratio is 4%, the connectivity of the remaining graph is about 0.367. When the node removal ratio reaches 13%, the connectivity of the remaining graph is close to 0. Therefore, the GAT-RL model can quickly and accurately identify the critical nodes in the attention flow network." @default.
- W3215995087 created "2021-12-06" @default.
- W3215995087 creator A5017384189 @default.
- W3215995087 creator A5029843517 @default.
- W3215995087 creator A5037185655 @default.
- W3215995087 creator A5039837606 @default.
- W3215995087 creator A5079980169 @default.
- W3215995087 date "2021-07-01" @default.
- W3215995087 modified "2023-09-27" @default.
- W3215995087 title "Critical Node Identification based on Attention Flow Networks" @default.
- W3215995087 cites W2007496481 @default.
- W3215995087 cites W2293245018 @default.
- W3215995087 cites W2402962589 @default.
- W3215995087 cites W2746720022 @default.
- W3215995087 cites W2752382243 @default.
- W3215995087 cites W2755571012 @default.
- W3215995087 cites W2895725668 @default.
- W3215995087 cites W2938157874 @default.
- W3215995087 cites W2962890993 @default.
- W3215995087 cites W3017207875 @default.
- W3215995087 cites W3028110392 @default.
- W3215995087 cites W3043785945 @default.
- W3215995087 doi "https://doi.org/10.1109/mlise54096.2021.00025" @default.
- W3215995087 hasPublicationYear "2021" @default.
- W3215995087 type Work @default.
- W3215995087 sameAs 3215995087 @default.
- W3215995087 citedByCount "1" @default.
- W3215995087 countsByYear W32159950872023 @default.
- W3215995087 crossrefType "proceedings-article" @default.
- W3215995087 hasAuthorship W3215995087A5017384189 @default.
- W3215995087 hasAuthorship W3215995087A5029843517 @default.
- W3215995087 hasAuthorship W3215995087A5037185655 @default.
- W3215995087 hasAuthorship W3215995087A5039837606 @default.
- W3215995087 hasAuthorship W3215995087A5079980169 @default.
- W3215995087 hasConcept C114614502 @default.
- W3215995087 hasConcept C114809511 @default.
- W3215995087 hasConcept C124101348 @default.
- W3215995087 hasConcept C126255220 @default.
- W3215995087 hasConcept C127413603 @default.
- W3215995087 hasConcept C132525143 @default.
- W3215995087 hasConcept C154945302 @default.
- W3215995087 hasConcept C2993807640 @default.
- W3215995087 hasConcept C33923547 @default.
- W3215995087 hasConcept C41008148 @default.
- W3215995087 hasConcept C53811970 @default.
- W3215995087 hasConcept C62611344 @default.
- W3215995087 hasConcept C66938386 @default.
- W3215995087 hasConcept C80444323 @default.
- W3215995087 hasConceptScore W3215995087C114614502 @default.
- W3215995087 hasConceptScore W3215995087C114809511 @default.
- W3215995087 hasConceptScore W3215995087C124101348 @default.
- W3215995087 hasConceptScore W3215995087C126255220 @default.
- W3215995087 hasConceptScore W3215995087C127413603 @default.
- W3215995087 hasConceptScore W3215995087C132525143 @default.
- W3215995087 hasConceptScore W3215995087C154945302 @default.
- W3215995087 hasConceptScore W3215995087C2993807640 @default.
- W3215995087 hasConceptScore W3215995087C33923547 @default.
- W3215995087 hasConceptScore W3215995087C41008148 @default.
- W3215995087 hasConceptScore W3215995087C53811970 @default.
- W3215995087 hasConceptScore W3215995087C62611344 @default.
- W3215995087 hasConceptScore W3215995087C66938386 @default.
- W3215995087 hasConceptScore W3215995087C80444323 @default.
- W3215995087 hasLocation W32159950871 @default.
- W3215995087 hasOpenAccess W3215995087 @default.
- W3215995087 hasPrimaryLocation W32159950871 @default.
- W3215995087 hasRelatedWork W1979030137 @default.
- W3215995087 hasRelatedWork W2333750674 @default.
- W3215995087 hasRelatedWork W2354256969 @default.
- W3215995087 hasRelatedWork W2577935167 @default.
- W3215995087 hasRelatedWork W2811389422 @default.
- W3215995087 hasRelatedWork W2911311653 @default.
- W3215995087 hasRelatedWork W2973230538 @default.
- W3215995087 hasRelatedWork W3191195260 @default.
- W3215995087 hasRelatedWork W3210890113 @default.
- W3215995087 hasRelatedWork W4294953534 @default.
- W3215995087 isParatext "false" @default.
- W3215995087 isRetracted "false" @default.
- W3215995087 magId "3215995087" @default.
- W3215995087 workType "article" @default.