Matches in SemOpenAlex for { <https://semopenalex.org/work/W3216056172> ?p ?o ?g. }
- W3216056172 endingPage "357" @default.
- W3216056172 startingPage "347" @default.
- W3216056172 abstract "In Internet of things (IoT) and Social Internet of things (SIoT), how to select or recommend suitable smart objects from an ocean of smart objects has become an increasingly critical issue. In this paper, we propose a novel neural network model called BLA (BERT and Bi-LSTM with attention) for smart objects scoring tasks to make recommendations in social Internet of things. The model uses a BERT network to obtain the sentence vectors for a smart object related text, and then uses Bi-LSTM with two types of attention mechanisms to extract representations of the smart object vectors. The devised attention mechanism contains a self-attention (SA) layer and a global-attention (GA) layer. The SA layer is able to estimate the importance of sentences or fields, which in a certain sense can substitute for manually defined features at the sentence and field level. The GA layer can measure the relationships between sentences (or fields) and user requirements, which further helps the model obtain more effective smart object vectors. The thing–thing relationship of Internet of things is introduced into the model to inprove the recommendation effect. Experimental results on the datasets demonstrate that our model outperforms other baseline methods." @default.
- W3216056172 created "2021-12-06" @default.
- W3216056172 creator A5017621102 @default.
- W3216056172 creator A5025394263 @default.
- W3216056172 creator A5063348652 @default.
- W3216056172 creator A5064100290 @default.
- W3216056172 creator A5066716873 @default.
- W3216056172 creator A5072440587 @default.
- W3216056172 creator A5076303678 @default.
- W3216056172 creator A5089402019 @default.
- W3216056172 date "2022-04-01" @default.
- W3216056172 modified "2023-10-16" @default.
- W3216056172 title "Smart objects recommendation based on pre-training with attention and the thing–thing relationship in social Internet of things" @default.
- W3216056172 cites W1496696598 @default.
- W3216056172 cites W1590881479 @default.
- W3216056172 cites W1832693441 @default.
- W3216056172 cites W1966286510 @default.
- W3216056172 cites W1969595988 @default.
- W3216056172 cites W1979519462 @default.
- W3216056172 cites W2008859536 @default.
- W3216056172 cites W2026892459 @default.
- W3216056172 cites W2031850392 @default.
- W3216056172 cites W2043472477 @default.
- W3216056172 cites W2048312868 @default.
- W3216056172 cites W2079332345 @default.
- W3216056172 cites W2107284210 @default.
- W3216056172 cites W2110753472 @default.
- W3216056172 cites W2150461699 @default.
- W3216056172 cites W2158997610 @default.
- W3216056172 cites W2159094788 @default.
- W3216056172 cites W2165897980 @default.
- W3216056172 cites W2279231846 @default.
- W3216056172 cites W2318523312 @default.
- W3216056172 cites W2504797124 @default.
- W3216056172 cites W2551618795 @default.
- W3216056172 cites W2567547739 @default.
- W3216056172 cites W2576544117 @default.
- W3216056172 cites W2587429714 @default.
- W3216056172 cites W2606107146 @default.
- W3216056172 cites W2607268013 @default.
- W3216056172 cites W2611652166 @default.
- W3216056172 cites W2726150830 @default.
- W3216056172 cites W2734620479 @default.
- W3216056172 cites W2764078585 @default.
- W3216056172 cites W2772084711 @default.
- W3216056172 cites W2796740921 @default.
- W3216056172 cites W2888542119 @default.
- W3216056172 cites W2898722594 @default.
- W3216056172 cites W2901850888 @default.
- W3216056172 cites W2945398042 @default.
- W3216056172 cites W2962851685 @default.
- W3216056172 cites W2964217331 @default.
- W3216056172 cites W2970811405 @default.
- W3216056172 cites W3006191871 @default.
- W3216056172 cites W3037304081 @default.
- W3216056172 cites W3105889875 @default.
- W3216056172 cites W3112787034 @default.
- W3216056172 cites W3132317140 @default.
- W3216056172 doi "https://doi.org/10.1016/j.future.2021.11.006" @default.
- W3216056172 hasPublicationYear "2022" @default.
- W3216056172 type Work @default.
- W3216056172 sameAs 3216056172 @default.
- W3216056172 citedByCount "4" @default.
- W3216056172 countsByYear W32160561722023 @default.
- W3216056172 crossrefType "journal-article" @default.
- W3216056172 hasAuthorship W3216056172A5017621102 @default.
- W3216056172 hasAuthorship W3216056172A5025394263 @default.
- W3216056172 hasAuthorship W3216056172A5063348652 @default.
- W3216056172 hasAuthorship W3216056172A5064100290 @default.
- W3216056172 hasAuthorship W3216056172A5066716873 @default.
- W3216056172 hasAuthorship W3216056172A5072440587 @default.
- W3216056172 hasAuthorship W3216056172A5076303678 @default.
- W3216056172 hasAuthorship W3216056172A5089402019 @default.
- W3216056172 hasConcept C107457646 @default.
- W3216056172 hasConcept C110875604 @default.
- W3216056172 hasConcept C136764020 @default.
- W3216056172 hasConcept C154945302 @default.
- W3216056172 hasConcept C178790620 @default.
- W3216056172 hasConcept C185592680 @default.
- W3216056172 hasConcept C202444582 @default.
- W3216056172 hasConcept C2777530160 @default.
- W3216056172 hasConcept C2779227376 @default.
- W3216056172 hasConcept C2780202397 @default.
- W3216056172 hasConcept C2781238097 @default.
- W3216056172 hasConcept C33923547 @default.
- W3216056172 hasConcept C41008148 @default.
- W3216056172 hasConcept C81860439 @default.
- W3216056172 hasConcept C9652623 @default.
- W3216056172 hasConceptScore W3216056172C107457646 @default.
- W3216056172 hasConceptScore W3216056172C110875604 @default.
- W3216056172 hasConceptScore W3216056172C136764020 @default.
- W3216056172 hasConceptScore W3216056172C154945302 @default.
- W3216056172 hasConceptScore W3216056172C178790620 @default.
- W3216056172 hasConceptScore W3216056172C185592680 @default.
- W3216056172 hasConceptScore W3216056172C202444582 @default.
- W3216056172 hasConceptScore W3216056172C2777530160 @default.
- W3216056172 hasConceptScore W3216056172C2779227376 @default.
- W3216056172 hasConceptScore W3216056172C2780202397 @default.