Matches in SemOpenAlex for { <https://semopenalex.org/work/W3216109610> ?p ?o ?g. }
- W3216109610 endingPage "26" @default.
- W3216109610 startingPage "1" @default.
- W3216109610 abstract "Personnel selection is a key important role for the human resource department of organization, and hesitant picture fuzzy linguistic sets (HPFLSs) elaborated the advantages of both hesitant linguistic set and picture fuzzy set, which is more flexible and effective to solve the decision-making problems of personnel selection than other extension of fuzzy linguistic sets (FLSs). Cross-entropy, as effective measurement tools, is wildly used under fuzzy multicriteria decision-making (FMCDM) environment; thus, in order to elaborate the advantages of both cross-entropy and HPFLSs under FMCDM environment, the cross-entropy definition of HPFLSs is firstly given in this paper. Meanwhile, several novel cross-entropy measures between two HPFLSs are introduced, and their related properties are proved. Then, an approach based on the weighted cross-entropy measures and TOPSIS under hesitant picture fuzzy linguistic environment is proposed. Finally, the proposed method is applied to the real personnel’s selection, and the ranking results show that the proposed methods are practical and effective." @default.
- W3216109610 created "2021-12-06" @default.
- W3216109610 creator A5010830540 @default.
- W3216109610 creator A5015817965 @default.
- W3216109610 creator A5044716937 @default.
- W3216109610 date "2021-11-20" @default.
- W3216109610 modified "2023-10-14" @default.
- W3216109610 title "Selecting Personnel with the Weighted Cross-Entropy TOPSIS of Hesitant Picture Fuzzy Linguistic Sets" @default.
- W3216109610 cites W1977593506 @default.
- W3216109610 cites W1983286635 @default.
- W3216109610 cites W1994809115 @default.
- W3216109610 cites W2000763566 @default.
- W3216109610 cites W2001837191 @default.
- W3216109610 cites W2034008273 @default.
- W3216109610 cites W2045287851 @default.
- W3216109610 cites W2049898494 @default.
- W3216109610 cites W2052145358 @default.
- W3216109610 cites W2052729728 @default.
- W3216109610 cites W2056750104 @default.
- W3216109610 cites W2059354089 @default.
- W3216109610 cites W2065496634 @default.
- W3216109610 cites W2085154346 @default.
- W3216109610 cites W2117827905 @default.
- W3216109610 cites W2131202053 @default.
- W3216109610 cites W2184997100 @default.
- W3216109610 cites W2197892685 @default.
- W3216109610 cites W2314609748 @default.
- W3216109610 cites W2463044584 @default.
- W3216109610 cites W2464342393 @default.
- W3216109610 cites W2605733478 @default.
- W3216109610 cites W2731207266 @default.
- W3216109610 cites W2734452893 @default.
- W3216109610 cites W2747719191 @default.
- W3216109610 cites W2802570367 @default.
- W3216109610 cites W2893642366 @default.
- W3216109610 cites W2922392018 @default.
- W3216109610 cites W2963874920 @default.
- W3216109610 cites W2968824011 @default.
- W3216109610 cites W2969124341 @default.
- W3216109610 cites W2972083920 @default.
- W3216109610 cites W2985128426 @default.
- W3216109610 cites W2988347501 @default.
- W3216109610 cites W2990224729 @default.
- W3216109610 cites W2990895846 @default.
- W3216109610 cites W2992421483 @default.
- W3216109610 cites W3006426923 @default.
- W3216109610 cites W3006560480 @default.
- W3216109610 cites W3023482151 @default.
- W3216109610 cites W3042518792 @default.
- W3216109610 cites W3043051653 @default.
- W3216109610 cites W3095436319 @default.
- W3216109610 cites W3101994482 @default.
- W3216109610 cites W3114984455 @default.
- W3216109610 cites W3126530800 @default.
- W3216109610 cites W3126929381 @default.
- W3216109610 cites W3155299247 @default.
- W3216109610 cites W3167372727 @default.
- W3216109610 cites W4211007335 @default.
- W3216109610 doi "https://doi.org/10.1155/2021/7104045" @default.
- W3216109610 hasPublicationYear "2021" @default.
- W3216109610 type Work @default.
- W3216109610 sameAs 3216109610 @default.
- W3216109610 citedByCount "1" @default.
- W3216109610 countsByYear W32161096102023 @default.
- W3216109610 crossrefType "journal-article" @default.
- W3216109610 hasAuthorship W3216109610A5010830540 @default.
- W3216109610 hasAuthorship W3216109610A5015817965 @default.
- W3216109610 hasAuthorship W3216109610A5044716937 @default.
- W3216109610 hasBestOaLocation W32161096101 @default.
- W3216109610 hasConcept C106301342 @default.
- W3216109610 hasConcept C119857082 @default.
- W3216109610 hasConcept C121332964 @default.
- W3216109610 hasConcept C124101348 @default.
- W3216109610 hasConcept C154945302 @default.
- W3216109610 hasConcept C189430467 @default.
- W3216109610 hasConcept C33923547 @default.
- W3216109610 hasConcept C41008148 @default.
- W3216109610 hasConcept C42011625 @default.
- W3216109610 hasConcept C42475967 @default.
- W3216109610 hasConcept C51566761 @default.
- W3216109610 hasConcept C58166 @default.
- W3216109610 hasConcept C62520636 @default.
- W3216109610 hasConceptScore W3216109610C106301342 @default.
- W3216109610 hasConceptScore W3216109610C119857082 @default.
- W3216109610 hasConceptScore W3216109610C121332964 @default.
- W3216109610 hasConceptScore W3216109610C124101348 @default.
- W3216109610 hasConceptScore W3216109610C154945302 @default.
- W3216109610 hasConceptScore W3216109610C189430467 @default.
- W3216109610 hasConceptScore W3216109610C33923547 @default.
- W3216109610 hasConceptScore W3216109610C41008148 @default.
- W3216109610 hasConceptScore W3216109610C42011625 @default.
- W3216109610 hasConceptScore W3216109610C42475967 @default.
- W3216109610 hasConceptScore W3216109610C51566761 @default.
- W3216109610 hasConceptScore W3216109610C58166 @default.
- W3216109610 hasConceptScore W3216109610C62520636 @default.
- W3216109610 hasFunder F4320321001 @default.
- W3216109610 hasLocation W32161096101 @default.
- W3216109610 hasLocation W32161096102 @default.