Matches in SemOpenAlex for { <https://semopenalex.org/work/W3216161393> ?p ?o ?g. }
- W3216161393 endingPage "158681" @default.
- W3216161393 startingPage "158672" @default.
- W3216161393 abstract "Defect detection in the manufacturing industry is of utmost importance for product quality inspection. Recently, optical defect detection has been investigated as an anomaly detection using different deep learning methods. However, the recent works do not explore the use of point pattern features, such as SIFT for anomaly detection using the recently developed set-based methods. In this paper, we present an evaluation of different point pattern feature detectors and descriptors for defect detection application. The evaluation is performed within the random finite set framework. Handcrafted point pattern features, such as SIFT as well as deep features are used in this evaluation. Random finite set-based defect detection is compared with state-of-the-arts anomaly detection methods. The results show that using point pattern features, such as SIFT as data points for random finite set-based anomaly detection achieves the most consistent defect detection accuracy on the MVTec-AD dataset." @default.
- W3216161393 created "2021-12-06" @default.
- W3216161393 creator A5015929812 @default.
- W3216161393 creator A5050176259 @default.
- W3216161393 creator A5064997605 @default.
- W3216161393 creator A5067249512 @default.
- W3216161393 date "2021-01-01" @default.
- W3216161393 modified "2023-10-14" @default.
- W3216161393 title "Point Pattern Feature-Based Anomaly Detection for Manufacturing Defects, in the Random Finite Set Framework" @default.
- W3216161393 cites W1120778379 @default.
- W3216161393 cites W1505641881 @default.
- W3216161393 cites W1635340334 @default.
- W3216161393 cites W1745301770 @default.
- W3216161393 cites W1832917778 @default.
- W3216161393 cites W1909771825 @default.
- W3216161393 cites W1925745898 @default.
- W3216161393 cites W1980911747 @default.
- W3216161393 cites W1987263271 @default.
- W3216161393 cites W2004313226 @default.
- W3216161393 cites W2014787937 @default.
- W3216161393 cites W2048281124 @default.
- W3216161393 cites W2092243497 @default.
- W3216161393 cites W2108598243 @default.
- W3216161393 cites W2110354007 @default.
- W3216161393 cites W2125629257 @default.
- W3216161393 cites W2131846894 @default.
- W3216161393 cites W2151103935 @default.
- W3216161393 cites W2161969291 @default.
- W3216161393 cites W2177274842 @default.
- W3216161393 cites W2194775991 @default.
- W3216161393 cites W2320444803 @default.
- W3216161393 cites W2406523001 @default.
- W3216161393 cites W2418691539 @default.
- W3216161393 cites W2511065100 @default.
- W3216161393 cites W2589306531 @default.
- W3216161393 cites W2594519801 @default.
- W3216161393 cites W2765854388 @default.
- W3216161393 cites W2768955070 @default.
- W3216161393 cites W2782812883 @default.
- W3216161393 cites W2783876128 @default.
- W3216161393 cites W2784032999 @default.
- W3216161393 cites W2794550100 @default.
- W3216161393 cites W2805454539 @default.
- W3216161393 cites W2840375954 @default.
- W3216161393 cites W2935842115 @default.
- W3216161393 cites W2948982773 @default.
- W3216161393 cites W2963760790 @default.
- W3216161393 cites W2964304707 @default.
- W3216161393 cites W2965496000 @default.
- W3216161393 cites W2979458572 @default.
- W3216161393 cites W2982512126 @default.
- W3216161393 cites W2984761674 @default.
- W3216161393 cites W3019507401 @default.
- W3216161393 cites W3020997326 @default.
- W3216161393 cites W3043075211 @default.
- W3216161393 cites W3109715690 @default.
- W3216161393 cites W3110536152 @default.
- W3216161393 cites W3118895125 @default.
- W3216161393 cites W3160366495 @default.
- W3216161393 doi "https://doi.org/10.1109/access.2021.3130261" @default.
- W3216161393 hasPublicationYear "2021" @default.
- W3216161393 type Work @default.
- W3216161393 sameAs 3216161393 @default.
- W3216161393 citedByCount "1" @default.
- W3216161393 countsByYear W32161613932023 @default.
- W3216161393 crossrefType "journal-article" @default.
- W3216161393 hasAuthorship W3216161393A5015929812 @default.
- W3216161393 hasAuthorship W3216161393A5050176259 @default.
- W3216161393 hasAuthorship W3216161393A5064997605 @default.
- W3216161393 hasAuthorship W3216161393A5067249512 @default.
- W3216161393 hasBestOaLocation W32161613931 @default.
- W3216161393 hasConcept C121332964 @default.
- W3216161393 hasConcept C12997251 @default.
- W3216161393 hasConcept C138885662 @default.
- W3216161393 hasConcept C153180895 @default.
- W3216161393 hasConcept C154945302 @default.
- W3216161393 hasConcept C169258074 @default.
- W3216161393 hasConcept C177264268 @default.
- W3216161393 hasConcept C199360897 @default.
- W3216161393 hasConcept C2524010 @default.
- W3216161393 hasConcept C26873012 @default.
- W3216161393 hasConcept C2776401178 @default.
- W3216161393 hasConcept C28719098 @default.
- W3216161393 hasConcept C33923547 @default.
- W3216161393 hasConcept C41008148 @default.
- W3216161393 hasConcept C41895202 @default.
- W3216161393 hasConcept C52622490 @default.
- W3216161393 hasConcept C61265191 @default.
- W3216161393 hasConcept C739882 @default.
- W3216161393 hasConceptScore W3216161393C121332964 @default.
- W3216161393 hasConceptScore W3216161393C12997251 @default.
- W3216161393 hasConceptScore W3216161393C138885662 @default.
- W3216161393 hasConceptScore W3216161393C153180895 @default.
- W3216161393 hasConceptScore W3216161393C154945302 @default.
- W3216161393 hasConceptScore W3216161393C169258074 @default.
- W3216161393 hasConceptScore W3216161393C177264268 @default.
- W3216161393 hasConceptScore W3216161393C199360897 @default.
- W3216161393 hasConceptScore W3216161393C2524010 @default.