Matches in SemOpenAlex for { <https://semopenalex.org/work/W3216179907> ?p ?o ?g. }
- W3216179907 endingPage "101274" @default.
- W3216179907 startingPage "101274" @default.
- W3216179907 abstract "Studying the persistence and spatial-temporal trends of air pollution is beneficial for determining the pollutant risk area and enables the development of associated prediction tools and models. Relying on the PM2.5 concentrations data retrieved via remote sensing from 2000 to 2018, the spatial and temporal pattern, variation tends, and persistence is determined through the Theil-Sen median trend analysis, Mann-Kendall, and Hurst exponent. We combine the Theil-Sen Median + Mann-Kendall and Hurst to quantitatively and qualitatively predict the future trends of China's PM2.5 concentrations as a new perspective. Results reveal that PM2.5 concentrations increased at first and then decreased significantly, with 2009–2011 as the turning point for PM2.5 pollution changes, particularly in Central China and the Southeast Coastal Area. The area where PM2.5 concentrations were below 10 μg/m3 account for 29.75% of China's total territory, reaching the annual average criterion value determined by the World Health Organization. The areas presenting a continuous increase (15.69%) and decline (17.46%) of PM2.5 concentrations were almost equal. As a result, the constant monitoring of the variance in PM2.5 concentrations in the sustainably increased and underdetermined regions, such as Tibet and Northeast China, is needed. This study used simulated PM2.5 concentrations data as a valuable complement to China's ground monitoring stations, thus compensating for a shortage of long-term series data. Grid data analysis can more finely show the interior disputes in PM2.5 concentrations. The algorithm codes can be freely downloaded and become a helpful tool for analyzing the spatio-temporal variation characteristics of primary air pollutants." @default.
- W3216179907 created "2021-12-06" @default.
- W3216179907 creator A5016064640 @default.
- W3216179907 creator A5039082990 @default.
- W3216179907 creator A5049480084 @default.
- W3216179907 creator A5071913876 @default.
- W3216179907 date "2022-01-01" @default.
- W3216179907 modified "2023-10-17" @default.
- W3216179907 title "Spatio-temporal variability and persistence of PM2.5 concentrations in China using trend analysis methods and Hurst exponent" @default.
- W3216179907 cites W1974428179 @default.
- W3216179907 cites W2007818389 @default.
- W3216179907 cites W2018764772 @default.
- W3216179907 cites W2054674045 @default.
- W3216179907 cites W2130042267 @default.
- W3216179907 cites W2202387136 @default.
- W3216179907 cites W2318680928 @default.
- W3216179907 cites W2341760625 @default.
- W3216179907 cites W2413238259 @default.
- W3216179907 cites W2577810053 @default.
- W3216179907 cites W2618179689 @default.
- W3216179907 cites W2769377466 @default.
- W3216179907 cites W2774423656 @default.
- W3216179907 cites W2912034185 @default.
- W3216179907 cites W2916271653 @default.
- W3216179907 cites W2952293508 @default.
- W3216179907 cites W2967679325 @default.
- W3216179907 cites W2968470298 @default.
- W3216179907 cites W2976166279 @default.
- W3216179907 cites W2979227657 @default.
- W3216179907 cites W2981177524 @default.
- W3216179907 cites W2990705976 @default.
- W3216179907 cites W2990762484 @default.
- W3216179907 cites W2995486797 @default.
- W3216179907 cites W2996545312 @default.
- W3216179907 cites W2997028631 @default.
- W3216179907 cites W3013911631 @default.
- W3216179907 cites W3014267671 @default.
- W3216179907 cites W3015976670 @default.
- W3216179907 cites W3020870444 @default.
- W3216179907 cites W3021622675 @default.
- W3216179907 cites W3022389505 @default.
- W3216179907 cites W3025614999 @default.
- W3216179907 cites W3028940737 @default.
- W3216179907 cites W3030103373 @default.
- W3216179907 cites W3045475570 @default.
- W3216179907 cites W3047116804 @default.
- W3216179907 cites W3047664852 @default.
- W3216179907 cites W3048710811 @default.
- W3216179907 cites W3049243329 @default.
- W3216179907 cites W3094270795 @default.
- W3216179907 cites W3096846826 @default.
- W3216179907 cites W3097497690 @default.
- W3216179907 cites W3114896178 @default.
- W3216179907 cites W3129104062 @default.
- W3216179907 cites W3142202864 @default.
- W3216179907 cites W3154118703 @default.
- W3216179907 cites W3165003789 @default.
- W3216179907 cites W3175631596 @default.
- W3216179907 cites W3179055806 @default.
- W3216179907 cites W3185877013 @default.
- W3216179907 cites W3195830738 @default.
- W3216179907 cites W3198320534 @default.
- W3216179907 cites W3202280524 @default.
- W3216179907 doi "https://doi.org/10.1016/j.apr.2021.101274" @default.
- W3216179907 hasPublicationYear "2022" @default.
- W3216179907 type Work @default.
- W3216179907 sameAs 3216179907 @default.
- W3216179907 citedByCount "19" @default.
- W3216179907 countsByYear W32161799072022 @default.
- W3216179907 countsByYear W32161799072023 @default.
- W3216179907 crossrefType "journal-article" @default.
- W3216179907 hasAuthorship W3216179907A5016064640 @default.
- W3216179907 hasAuthorship W3216179907A5039082990 @default.
- W3216179907 hasAuthorship W3216179907A5049480084 @default.
- W3216179907 hasAuthorship W3216179907A5071913876 @default.
- W3216179907 hasConcept C100970517 @default.
- W3216179907 hasConcept C105795698 @default.
- W3216179907 hasConcept C127142870 @default.
- W3216179907 hasConcept C127313418 @default.
- W3216179907 hasConcept C166957645 @default.
- W3216179907 hasConcept C18903297 @default.
- W3216179907 hasConcept C191935318 @default.
- W3216179907 hasConcept C205649164 @default.
- W3216179907 hasConcept C21689155 @default.
- W3216179907 hasConcept C2524010 @default.
- W3216179907 hasConcept C33923547 @default.
- W3216179907 hasConcept C39432304 @default.
- W3216179907 hasConcept C49204034 @default.
- W3216179907 hasConcept C521259446 @default.
- W3216179907 hasConcept C86803240 @default.
- W3216179907 hasConcept C96835011 @default.
- W3216179907 hasConcept C99844830 @default.
- W3216179907 hasConceptScore W3216179907C100970517 @default.
- W3216179907 hasConceptScore W3216179907C105795698 @default.
- W3216179907 hasConceptScore W3216179907C127142870 @default.
- W3216179907 hasConceptScore W3216179907C127313418 @default.
- W3216179907 hasConceptScore W3216179907C166957645 @default.
- W3216179907 hasConceptScore W3216179907C18903297 @default.