Matches in SemOpenAlex for { <https://semopenalex.org/work/W3216223417> ?p ?o ?g. }
- W3216223417 endingPage "158907" @default.
- W3216223417 startingPage "158892" @default.
- W3216223417 abstract "Automation of Radio Access Network (RAN) operation is a fundamental feature to manage sustainable and efficient Beyond Fifth-generation wireless (5G) networks, in the context of the Next Generation Self-Organizing Network (NG-SON) vision. Machine Learning (ML) is already identified as the key ingredient of this vision, with new standardized and open architectures, like Open-RAN (O-RAN), taking momentum. In this paper, we propose models based on single-task and Multi-Task Learning (MTL) paradigms to address two RAN use cases, handover management and initial Modulation and Coding Scheme (MCS) selection. Traditional handover schemes have the drawback of taking into account the quality of the signals from the serving, and the target cell, before the handover. Also, initial MCS at the start of the session and after a handover usually is handled conservatively. The proposed ML solutions allow to address these drawbacks by 1) considering the expected Quality of Experience (QoE) resulting from the decision of a target cell to handover, as the driving principle of the handover decision and 2) using the experience extracted from network data to make smarter initial MCS allocations. In this line, we implement a realistic cellular simulation scenario by incorporating coverage holes to build an extensive database to train and test the proposed models. The results show that the ML-based models outperform the 3rd Generation Partnership Project (3GPP) standardized handover and initial MCS selection approaches by improving the QoE of users resulting from a handover and the throughput obtained upon establishing a new connection with a network. Besides that, using the obtained results, this paper extensively discusses the merits of leveraging the MTL model to address different, but related multiple RAN functions because it allows reusing a common learning architecture for multiple RAN use cases, which provides significant implementation advantages." @default.
- W3216223417 created "2021-12-06" @default.
- W3216223417 creator A5002762673 @default.
- W3216223417 creator A5046133708 @default.
- W3216223417 creator A5051933180 @default.
- W3216223417 creator A5055526140 @default.
- W3216223417 date "2021-01-01" @default.
- W3216223417 modified "2023-10-08" @default.
- W3216223417 title "Multi-Task Learning for Efficient Management of Beyond 5G Radio Access Network Architectures" @default.
- W3216223417 cites W1920962657 @default.
- W3216223417 cites W1921605540 @default.
- W3216223417 cites W1989449561 @default.
- W3216223417 cites W1997081526 @default.
- W3216223417 cites W2018111243 @default.
- W3216223417 cites W2029946638 @default.
- W3216223417 cites W2056985365 @default.
- W3216223417 cites W2060277733 @default.
- W3216223417 cites W2064675550 @default.
- W3216223417 cites W2088678166 @default.
- W3216223417 cites W2136848157 @default.
- W3216223417 cites W2163922914 @default.
- W3216223417 cites W2184814841 @default.
- W3216223417 cites W2295761692 @default.
- W3216223417 cites W2469864156 @default.
- W3216223417 cites W2542284998 @default.
- W3216223417 cites W2735793369 @default.
- W3216223417 cites W2762605243 @default.
- W3216223417 cites W2886115176 @default.
- W3216223417 cites W2907637692 @default.
- W3216223417 cites W2962797279 @default.
- W3216223417 cites W2962883549 @default.
- W3216223417 cites W2963241379 @default.
- W3216223417 cites W2998795925 @default.
- W3216223417 cites W2999805390 @default.
- W3216223417 cites W3006587252 @default.
- W3216223417 cites W3030364939 @default.
- W3216223417 cites W3038397330 @default.
- W3216223417 cites W3091970811 @default.
- W3216223417 cites W3098133185 @default.
- W3216223417 cites W3106901158 @default.
- W3216223417 cites W3119054233 @default.
- W3216223417 cites W3194556091 @default.
- W3216223417 cites W3209042722 @default.
- W3216223417 doi "https://doi.org/10.1109/access.2021.3130740" @default.
- W3216223417 hasPublicationYear "2021" @default.
- W3216223417 type Work @default.
- W3216223417 sameAs 3216223417 @default.
- W3216223417 citedByCount "4" @default.
- W3216223417 countsByYear W32162234172022 @default.
- W3216223417 countsByYear W32162234172023 @default.
- W3216223417 crossrefType "journal-article" @default.
- W3216223417 hasAuthorship W3216223417A5002762673 @default.
- W3216223417 hasAuthorship W3216223417A5046133708 @default.
- W3216223417 hasAuthorship W3216223417A5051933180 @default.
- W3216223417 hasAuthorship W3216223417A5055526140 @default.
- W3216223417 hasBestOaLocation W32162234171 @default.
- W3216223417 hasConcept C108037233 @default.
- W3216223417 hasConcept C111852164 @default.
- W3216223417 hasConcept C151730666 @default.
- W3216223417 hasConcept C153646914 @default.
- W3216223417 hasConcept C182448111 @default.
- W3216223417 hasConcept C2779333187 @default.
- W3216223417 hasConcept C2779343474 @default.
- W3216223417 hasConcept C31258907 @default.
- W3216223417 hasConcept C41008148 @default.
- W3216223417 hasConcept C5119721 @default.
- W3216223417 hasConcept C555944384 @default.
- W3216223417 hasConcept C76155785 @default.
- W3216223417 hasConcept C86803240 @default.
- W3216223417 hasConceptScore W3216223417C108037233 @default.
- W3216223417 hasConceptScore W3216223417C111852164 @default.
- W3216223417 hasConceptScore W3216223417C151730666 @default.
- W3216223417 hasConceptScore W3216223417C153646914 @default.
- W3216223417 hasConceptScore W3216223417C182448111 @default.
- W3216223417 hasConceptScore W3216223417C2779333187 @default.
- W3216223417 hasConceptScore W3216223417C2779343474 @default.
- W3216223417 hasConceptScore W3216223417C31258907 @default.
- W3216223417 hasConceptScore W3216223417C41008148 @default.
- W3216223417 hasConceptScore W3216223417C5119721 @default.
- W3216223417 hasConceptScore W3216223417C555944384 @default.
- W3216223417 hasConceptScore W3216223417C76155785 @default.
- W3216223417 hasConceptScore W3216223417C86803240 @default.
- W3216223417 hasLocation W32162234171 @default.
- W3216223417 hasLocation W32162234172 @default.
- W3216223417 hasLocation W32162234173 @default.
- W3216223417 hasOpenAccess W3216223417 @default.
- W3216223417 hasPrimaryLocation W32162234171 @default.
- W3216223417 hasRelatedWork W1579860481 @default.
- W3216223417 hasRelatedWork W2010468566 @default.
- W3216223417 hasRelatedWork W2030941986 @default.
- W3216223417 hasRelatedWork W2043671591 @default.
- W3216223417 hasRelatedWork W2094017096 @default.
- W3216223417 hasRelatedWork W2132912146 @default.
- W3216223417 hasRelatedWork W2153057592 @default.
- W3216223417 hasRelatedWork W2276322545 @default.
- W3216223417 hasRelatedWork W1718268039 @default.
- W3216223417 hasRelatedWork W2148228914 @default.
- W3216223417 hasVolume "9" @default.