Matches in SemOpenAlex for { <https://semopenalex.org/work/W3216262020> ?p ?o ?g. }
- W3216262020 endingPage "103335" @default.
- W3216262020 startingPage "103335" @default.
- W3216262020 abstract "Novel biometric systems have emerged in recent years as an alternative or complement to traditional identification systems based on passwords (something you know) or tokens (something you have). In this sense, biopotentials signals such as electrocardiograms (cardiac signal) or electroencephalograms (brain signals) have attracted many researchers’ attention. This work proposes an innovative identification technique based on electrocardiograms (ECGs) and musical features (e.g., dynamics, rhythm or timbre) commonly used to characterise audio files. In a nutshell, after pre-processing ECG recordings, we transform them into audio wave files, split them into segments, extract features into five musical dimensions and finally fed a classifier with these instances. The proposal’s workability is confirmed by experimentation using the MIT-BIH Normal Sinus Rhythm Database with 18 subjects and offering an accuracy of 96.6 and a low error rate with FAR and FRR 0.002 and 0.004, respectively." @default.
- W3216262020 created "2021-12-06" @default.
- W3216262020 creator A5004222325 @default.
- W3216262020 creator A5035792370 @default.
- W3216262020 creator A5036703361 @default.
- W3216262020 creator A5069794920 @default.
- W3216262020 date "2022-02-01" @default.
- W3216262020 modified "2023-09-30" @default.
- W3216262020 title "ECGsound for human identification" @default.
- W3216262020 cites W1546847729 @default.
- W3216262020 cites W1986077389 @default.
- W3216262020 cites W1986438083 @default.
- W3216262020 cites W2007123640 @default.
- W3216262020 cites W2010662891 @default.
- W3216262020 cites W2056500480 @default.
- W3216262020 cites W2080116094 @default.
- W3216262020 cites W2149282426 @default.
- W3216262020 cites W2162800060 @default.
- W3216262020 cites W2276944129 @default.
- W3216262020 cites W2293524822 @default.
- W3216262020 cites W2313797383 @default.
- W3216262020 cites W2326461200 @default.
- W3216262020 cites W2469850819 @default.
- W3216262020 cites W2494936033 @default.
- W3216262020 cites W2512118262 @default.
- W3216262020 cites W2516218154 @default.
- W3216262020 cites W2559137209 @default.
- W3216262020 cites W2589100897 @default.
- W3216262020 cites W2589309664 @default.
- W3216262020 cites W2614292327 @default.
- W3216262020 cites W2620050178 @default.
- W3216262020 cites W2736978235 @default.
- W3216262020 cites W2738639466 @default.
- W3216262020 cites W2759456125 @default.
- W3216262020 cites W2766284463 @default.
- W3216262020 cites W2779797561 @default.
- W3216262020 cites W2793312492 @default.
- W3216262020 cites W2794566020 @default.
- W3216262020 cites W2795056531 @default.
- W3216262020 cites W2795302640 @default.
- W3216262020 cites W2811161392 @default.
- W3216262020 cites W2884613329 @default.
- W3216262020 cites W2890279985 @default.
- W3216262020 cites W2892485325 @default.
- W3216262020 cites W2905396542 @default.
- W3216262020 cites W2911945468 @default.
- W3216262020 cites W2911964244 @default.
- W3216262020 cites W2916569695 @default.
- W3216262020 cites W2927164398 @default.
- W3216262020 cites W2932995131 @default.
- W3216262020 cites W2934396928 @default.
- W3216262020 cites W2940862616 @default.
- W3216262020 cites W2944090083 @default.
- W3216262020 cites W2949402129 @default.
- W3216262020 cites W2964437183 @default.
- W3216262020 cites W2966248858 @default.
- W3216262020 cites W2980343828 @default.
- W3216262020 cites W2984926748 @default.
- W3216262020 cites W2990961119 @default.
- W3216262020 cites W2991390974 @default.
- W3216262020 cites W3000069883 @default.
- W3216262020 cites W3002732654 @default.
- W3216262020 cites W3006745772 @default.
- W3216262020 cites W3008383275 @default.
- W3216262020 cites W3011609862 @default.
- W3216262020 cites W3012089473 @default.
- W3216262020 cites W3027572331 @default.
- W3216262020 cites W3035159033 @default.
- W3216262020 cites W3035471470 @default.
- W3216262020 cites W3037146579 @default.
- W3216262020 cites W3037473497 @default.
- W3216262020 cites W3037788879 @default.
- W3216262020 cites W3086649294 @default.
- W3216262020 cites W3112789885 @default.
- W3216262020 cites W3119942430 @default.
- W3216262020 cites W3124136285 @default.
- W3216262020 cites W3127514899 @default.
- W3216262020 cites W3128964087 @default.
- W3216262020 cites W4239124742 @default.
- W3216262020 cites W66325709 @default.
- W3216262020 doi "https://doi.org/10.1016/j.bspc.2021.103335" @default.
- W3216262020 hasPublicationYear "2022" @default.
- W3216262020 type Work @default.
- W3216262020 sameAs 3216262020 @default.
- W3216262020 citedByCount "2" @default.
- W3216262020 countsByYear W32162620202022 @default.
- W3216262020 crossrefType "journal-article" @default.
- W3216262020 hasAuthorship W3216262020A5004222325 @default.
- W3216262020 hasAuthorship W3216262020A5035792370 @default.
- W3216262020 hasAuthorship W3216262020A5036703361 @default.
- W3216262020 hasAuthorship W3216262020A5069794920 @default.
- W3216262020 hasConcept C104267543 @default.
- W3216262020 hasConcept C104317684 @default.
- W3216262020 hasConcept C109297577 @default.
- W3216262020 hasConcept C112313634 @default.
- W3216262020 hasConcept C116834253 @default.
- W3216262020 hasConcept C127716648 @default.
- W3216262020 hasConcept C142362112 @default.