Matches in SemOpenAlex for { <https://semopenalex.org/work/W3216295919> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W3216295919 endingPage "11589" @default.
- W3216295919 startingPage "11578" @default.
- W3216295919 abstract "Smart industries enabling automation and data exchange in manufacturing technologies demanding real-time processing, nearby storage, and reliability, all of which can be satisfied by the fog computing architecture. With the emergence of smart devices coupled with a diverse range of application requirements, it is essential to have an intelligent fog network where intelligence is spread across all network segments, taking network nodes self-aware and self-decision making. In fog networks, an optimal distribution decision faces challenges due to uncertainties associated with user workload and available resources at the fog nodes and also the wide range of node’s computing power. Given this challenge, a computational offloading and CPU resource scheduling method for minimizing energy consumption is proposed. To investigate the characteristics for offloading and optimizing their allocation, we consider two types of tasks, namely, offloadable and nonoffloadable tasks. The independent fog nodes adopt the same strategy without prior knowledge of the dynamic statistics and global observations, aiming to maximize a common goal with cooperative behaviors. Then, the deep recurrent <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$Q$ </tex-math></inline-formula> -network (DRQN) is applied to deal with the partial-observability from limited information. The proposed DRQN-based method requires comparatively less computational complexity than the conventional <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$Q$ </tex-math></inline-formula> -learning algorithm. The simulation results show that the proposed method can effectively deal with both transmission and CPU energy consumptions while guaranteeing convergence in a limited time." @default.
- W3216295919 created "2021-12-06" @default.
- W3216295919 creator A5032243366 @default.
- W3216295919 creator A5047432490 @default.
- W3216295919 date "2022-07-01" @default.
- W3216295919 modified "2023-10-05" @default.
- W3216295919 title "Online Partial Offloading and Task Scheduling in SDN-Fog Networks With Deep Recurrent Reinforcement Learning" @default.
- W3216295919 cites W2064675550 @default.
- W3216295919 cites W2080017588 @default.
- W3216295919 cites W2145339207 @default.
- W3216295919 cites W2322853118 @default.
- W3216295919 cites W2472333518 @default.
- W3216295919 cites W2507126430 @default.
- W3216295919 cites W2516316490 @default.
- W3216295919 cites W2538968690 @default.
- W3216295919 cites W2606213502 @default.
- W3216295919 cites W2607730367 @default.
- W3216295919 cites W2615926310 @default.
- W3216295919 cites W2794343007 @default.
- W3216295919 cites W2802528223 @default.
- W3216295919 cites W2891123429 @default.
- W3216295919 cites W2939138533 @default.
- W3216295919 cites W2962856838 @default.
- W3216295919 cites W2962883549 @default.
- W3216295919 cites W2964098968 @default.
- W3216295919 cites W2964335916 @default.
- W3216295919 cites W2964489894 @default.
- W3216295919 cites W2970759804 @default.
- W3216295919 cites W2974654731 @default.
- W3216295919 cites W2982530739 @default.
- W3216295919 cites W2996745384 @default.
- W3216295919 cites W3042857242 @default.
- W3216295919 cites W3103487703 @default.
- W3216295919 cites W3107242135 @default.
- W3216295919 cites W3182967956 @default.
- W3216295919 cites W4252624212 @default.
- W3216295919 cites W60808401 @default.
- W3216295919 doi "https://doi.org/10.1109/jiot.2021.3130474" @default.
- W3216295919 hasPublicationYear "2022" @default.
- W3216295919 type Work @default.
- W3216295919 sameAs 3216295919 @default.
- W3216295919 citedByCount "12" @default.
- W3216295919 countsByYear W32162959192022 @default.
- W3216295919 countsByYear W32162959192023 @default.
- W3216295919 crossrefType "journal-article" @default.
- W3216295919 hasAuthorship W3216295919A5032243366 @default.
- W3216295919 hasAuthorship W3216295919A5047432490 @default.
- W3216295919 hasConcept C111919701 @default.
- W3216295919 hasConcept C120314980 @default.
- W3216295919 hasConcept C126255220 @default.
- W3216295919 hasConcept C154945302 @default.
- W3216295919 hasConcept C199845137 @default.
- W3216295919 hasConcept C206729178 @default.
- W3216295919 hasConcept C2778476105 @default.
- W3216295919 hasConcept C31258907 @default.
- W3216295919 hasConcept C33923547 @default.
- W3216295919 hasConcept C41008148 @default.
- W3216295919 hasConcept C55416958 @default.
- W3216295919 hasConcept C74172769 @default.
- W3216295919 hasConcept C97541855 @default.
- W3216295919 hasConceptScore W3216295919C111919701 @default.
- W3216295919 hasConceptScore W3216295919C120314980 @default.
- W3216295919 hasConceptScore W3216295919C126255220 @default.
- W3216295919 hasConceptScore W3216295919C154945302 @default.
- W3216295919 hasConceptScore W3216295919C199845137 @default.
- W3216295919 hasConceptScore W3216295919C206729178 @default.
- W3216295919 hasConceptScore W3216295919C2778476105 @default.
- W3216295919 hasConceptScore W3216295919C31258907 @default.
- W3216295919 hasConceptScore W3216295919C33923547 @default.
- W3216295919 hasConceptScore W3216295919C41008148 @default.
- W3216295919 hasConceptScore W3216295919C55416958 @default.
- W3216295919 hasConceptScore W3216295919C74172769 @default.
- W3216295919 hasConceptScore W3216295919C97541855 @default.
- W3216295919 hasFunder F4320334593 @default.
- W3216295919 hasFunder F4320334841 @default.
- W3216295919 hasIssue "13" @default.
- W3216295919 hasLocation W32162959191 @default.
- W3216295919 hasOpenAccess W3216295919 @default.
- W3216295919 hasPrimaryLocation W32162959191 @default.
- W3216295919 hasRelatedWork W1882733036 @default.
- W3216295919 hasRelatedWork W1992741870 @default.
- W3216295919 hasRelatedWork W2008607837 @default.
- W3216295919 hasRelatedWork W2099266623 @default.
- W3216295919 hasRelatedWork W2160425906 @default.
- W3216295919 hasRelatedWork W2389719923 @default.
- W3216295919 hasRelatedWork W2546696010 @default.
- W3216295919 hasRelatedWork W3090647422 @default.
- W3216295919 hasRelatedWork W3212584892 @default.
- W3216295919 hasRelatedWork W4367356022 @default.
- W3216295919 hasVolume "9" @default.
- W3216295919 isParatext "false" @default.
- W3216295919 isRetracted "false" @default.
- W3216295919 magId "3216295919" @default.
- W3216295919 workType "article" @default.