Matches in SemOpenAlex for { <https://semopenalex.org/work/W3216304872> ?p ?o ?g. }
- W3216304872 abstract "Quantum sensing is an important application of emerging quantum technologies. We explore whether a hybrid system of quantum sensors and quantum circuits can surpass the classical limit of sensing. In particular, we use optimization techniques to search for encoder and decoder circuits that scalably improve sensitivity under given application and noise characteristics. Our approach uses a variational algorithm that can learn a quantum sensing circuit based on platform-specific control capacity, noise, and signal distribution. The quantum circuit is composed of an encoder which prepares the optimal sensing state and a decoder which gives an output distribution containing information of the signal. We optimize the full circuit to maximize the Signal-to-Noise Ratio (SNR). Furthermore, this learning algorithm can be run on real hardware scalably by using the parameter-shift rule which enables gradient evaluation on noisy quantum circuits, avoiding the exponential cost of quantum system simulation. We demonstrate up to 13.12x SNR improvement over existing fixed protocol (GHZ), and 3.19x Classical Fisher Information (CFI) improvement over the classical limit on 15 qubits using IBM quantum computer. More notably, our algorithm overcomes the decreasing performance of existing entanglement-based protocols with increased system sizes." @default.
- W3216304872 created "2021-12-06" @default.
- W3216304872 creator A5013927035 @default.
- W3216304872 creator A5025701892 @default.
- W3216304872 creator A5033264921 @default.
- W3216304872 creator A5043345258 @default.
- W3216304872 creator A5053839319 @default.
- W3216304872 creator A5065920923 @default.
- W3216304872 creator A5068826612 @default.
- W3216304872 creator A5075201562 @default.
- W3216304872 date "2021-10-01" @default.
- W3216304872 modified "2023-09-27" @default.
- W3216304872 title "Adaptive Circuit Learning for Quantum Metrology" @default.
- W3216304872 cites W1568345435 @default.
- W3216304872 cites W1728630216 @default.
- W3216304872 cites W1878331791 @default.
- W3216304872 cites W1981983416 @default.
- W3216304872 cites W1983383923 @default.
- W3216304872 cites W1999664967 @default.
- W3216304872 cites W2007746935 @default.
- W3216304872 cites W2029232010 @default.
- W3216304872 cites W2031862801 @default.
- W3216304872 cites W2034078480 @default.
- W3216304872 cites W2050594526 @default.
- W3216304872 cites W2053565514 @default.
- W3216304872 cites W2078635972 @default.
- W3216304872 cites W2083423624 @default.
- W3216304872 cites W2087491525 @default.
- W3216304872 cites W2089368486 @default.
- W3216304872 cites W2103906554 @default.
- W3216304872 cites W2114013702 @default.
- W3216304872 cites W2155582596 @default.
- W3216304872 cites W2159974629 @default.
- W3216304872 cites W2163602254 @default.
- W3216304872 cites W2171074980 @default.
- W3216304872 cites W2187467903 @default.
- W3216304872 cites W2578080479 @default.
- W3216304872 cites W2737180843 @default.
- W3216304872 cites W2755255888 @default.
- W3216304872 cites W2762585259 @default.
- W3216304872 cites W2767966692 @default.
- W3216304872 cites W2792946961 @default.
- W3216304872 cites W2793618798 @default.
- W3216304872 cites W2884638803 @default.
- W3216304872 cites W2888228864 @default.
- W3216304872 cites W2913558472 @default.
- W3216304872 cites W2913992572 @default.
- W3216304872 cites W2930242962 @default.
- W3216304872 cites W2949469742 @default.
- W3216304872 cites W2950036696 @default.
- W3216304872 cites W2969592673 @default.
- W3216304872 cites W2976152282 @default.
- W3216304872 cites W2979840408 @default.
- W3216304872 cites W2994831876 @default.
- W3216304872 cites W3014097088 @default.
- W3216304872 cites W3034909587 @default.
- W3216304872 cites W3043784418 @default.
- W3216304872 cites W3102949948 @default.
- W3216304872 cites W3103869002 @default.
- W3216304872 cites W3104063148 @default.
- W3216304872 cites W3104157705 @default.
- W3216304872 cites W3105676084 @default.
- W3216304872 cites W3145544159 @default.
- W3216304872 doi "https://doi.org/10.1109/qce52317.2021.00063" @default.
- W3216304872 hasPublicationYear "2021" @default.
- W3216304872 type Work @default.
- W3216304872 sameAs 3216304872 @default.
- W3216304872 citedByCount "0" @default.
- W3216304872 crossrefType "proceedings-article" @default.
- W3216304872 hasAuthorship W3216304872A5013927035 @default.
- W3216304872 hasAuthorship W3216304872A5025701892 @default.
- W3216304872 hasAuthorship W3216304872A5033264921 @default.
- W3216304872 hasAuthorship W3216304872A5043345258 @default.
- W3216304872 hasAuthorship W3216304872A5053839319 @default.
- W3216304872 hasAuthorship W3216304872A5065920923 @default.
- W3216304872 hasAuthorship W3216304872A5068826612 @default.
- W3216304872 hasAuthorship W3216304872A5075201562 @default.
- W3216304872 hasBestOaLocation W32163048722 @default.
- W3216304872 hasConcept C111919701 @default.
- W3216304872 hasConcept C113775141 @default.
- W3216304872 hasConcept C11413529 @default.
- W3216304872 hasConcept C115961682 @default.
- W3216304872 hasConcept C118505674 @default.
- W3216304872 hasConcept C119599485 @default.
- W3216304872 hasConcept C121040770 @default.
- W3216304872 hasConcept C121332964 @default.
- W3216304872 hasConcept C124148022 @default.
- W3216304872 hasConcept C127413603 @default.
- W3216304872 hasConcept C134146338 @default.
- W3216304872 hasConcept C154945302 @default.
- W3216304872 hasConcept C186468114 @default.
- W3216304872 hasConcept C203087015 @default.
- W3216304872 hasConcept C24326235 @default.
- W3216304872 hasConcept C41008148 @default.
- W3216304872 hasConcept C51003876 @default.
- W3216304872 hasConcept C62520636 @default.
- W3216304872 hasConcept C84114770 @default.
- W3216304872 hasConcept C95013731 @default.
- W3216304872 hasConcept C99498987 @default.
- W3216304872 hasConceptScore W3216304872C111919701 @default.