Matches in SemOpenAlex for { <https://semopenalex.org/work/W3216307528> ?p ?o ?g. }
- W3216307528 endingPage "7704" @default.
- W3216307528 startingPage "7687" @default.
- W3216307528 abstract "Studies correlating specific genetic mutations and treatment response are ongoing to establish an effective treatment strategy for gastric cancer (GC). To facilitate this research, a cost- and time-effective method to analyze the mutational status is necessary. Deep learning (DL) has been successfully applied to analyze hematoxylin and eosin (H and E)-stained tissue slide images.To test the feasibility of DL-based classifiers for the frequently occurring mutations from the H and E-stained GC tissue whole slide images (WSIs).From the GC dataset of The Cancer Genome Atlas (TCGA-STAD), wild-type/mutation classifiers for CDH1, ERBB2, KRAS, PIK3CA, and TP53 genes were trained on 360 × 360-pixel patches of tissue images.The area under the curve (AUC) for the receiver operating characteristic (ROC) curves ranged from 0.727 to 0.862 for the TCGA frozen WSIs and 0.661 to 0.858 for the TCGA formalin-fixed paraffin-embedded (FFPE) WSIs. The performance of the classifier can be improved by adding new FFPE WSI training dataset from our institute. The classifiers trained for mutation prediction in colorectal cancer completely failed to predict the mutational status in GC, indicating that DL-based mutation classifiers are incompatible between different cancers.This study concluded that DL could predict genetic mutations in H and E-stained tissue slides when they are trained with appropriate tissue data." @default.
- W3216307528 created "2021-12-06" @default.
- W3216307528 creator A5008352862 @default.
- W3216307528 creator A5021756064 @default.
- W3216307528 creator A5023527433 @default.
- W3216307528 creator A5029495209 @default.
- W3216307528 creator A5079682715 @default.
- W3216307528 date "2021-11-28" @default.
- W3216307528 modified "2023-10-01" @default.
- W3216307528 title "Prediction of genetic alterations from gastric cancer histopathology images using a fully automated deep learning approach" @default.
- W3216307528 cites W1967835984 @default.
- W3216307528 cites W2002882918 @default.
- W3216307528 cites W2041488531 @default.
- W3216307528 cites W2070595900 @default.
- W3216307528 cites W2097113581 @default.
- W3216307528 cites W2470965540 @default.
- W3216307528 cites W2504220184 @default.
- W3216307528 cites W2624968784 @default.
- W3216307528 cites W2760946358 @default.
- W3216307528 cites W2761668583 @default.
- W3216307528 cites W2769322745 @default.
- W3216307528 cites W2778517291 @default.
- W3216307528 cites W2796408191 @default.
- W3216307528 cites W2796409016 @default.
- W3216307528 cites W2889646458 @default.
- W3216307528 cites W2902851512 @default.
- W3216307528 cites W2919115771 @default.
- W3216307528 cites W2942549249 @default.
- W3216307528 cites W2945107932 @default.
- W3216307528 cites W2945500496 @default.
- W3216307528 cites W2958034733 @default.
- W3216307528 cites W2965481926 @default.
- W3216307528 cites W2967444033 @default.
- W3216307528 cites W2976103928 @default.
- W3216307528 cites W2981602595 @default.
- W3216307528 cites W2998472909 @default.
- W3216307528 cites W2999783791 @default.
- W3216307528 cites W3005621234 @default.
- W3216307528 cites W3010515072 @default.
- W3216307528 cites W3033721673 @default.
- W3216307528 cites W3039674406 @default.
- W3216307528 cites W3044996171 @default.
- W3216307528 cites W3045376070 @default.
- W3216307528 cites W3082933974 @default.
- W3216307528 cites W3088930327 @default.
- W3216307528 cites W3095520330 @default.
- W3216307528 cites W3098164696 @default.
- W3216307528 cites W3104135675 @default.
- W3216307528 cites W3109000640 @default.
- W3216307528 cites W3124465767 @default.
- W3216307528 cites W3136286539 @default.
- W3216307528 doi "https://doi.org/10.3748/wjg.v27.i44.7687" @default.
- W3216307528 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34908807" @default.
- W3216307528 hasPublicationYear "2021" @default.
- W3216307528 type Work @default.
- W3216307528 sameAs 3216307528 @default.
- W3216307528 citedByCount "9" @default.
- W3216307528 countsByYear W32163075282022 @default.
- W3216307528 countsByYear W32163075282023 @default.
- W3216307528 crossrefType "journal-article" @default.
- W3216307528 hasAuthorship W3216307528A5008352862 @default.
- W3216307528 hasAuthorship W3216307528A5021756064 @default.
- W3216307528 hasAuthorship W3216307528A5023527433 @default.
- W3216307528 hasAuthorship W3216307528A5029495209 @default.
- W3216307528 hasAuthorship W3216307528A5079682715 @default.
- W3216307528 hasBestOaLocation W32163075281 @default.
- W3216307528 hasConcept C104317684 @default.
- W3216307528 hasConcept C119857082 @default.
- W3216307528 hasConcept C121608353 @default.
- W3216307528 hasConcept C154945302 @default.
- W3216307528 hasConcept C2781187634 @default.
- W3216307528 hasConcept C41008148 @default.
- W3216307528 hasConcept C501734568 @default.
- W3216307528 hasConcept C526805850 @default.
- W3216307528 hasConcept C54355233 @default.
- W3216307528 hasConcept C58471807 @default.
- W3216307528 hasConcept C70721500 @default.
- W3216307528 hasConcept C86803240 @default.
- W3216307528 hasConcept C95623464 @default.
- W3216307528 hasConceptScore W3216307528C104317684 @default.
- W3216307528 hasConceptScore W3216307528C119857082 @default.
- W3216307528 hasConceptScore W3216307528C121608353 @default.
- W3216307528 hasConceptScore W3216307528C154945302 @default.
- W3216307528 hasConceptScore W3216307528C2781187634 @default.
- W3216307528 hasConceptScore W3216307528C41008148 @default.
- W3216307528 hasConceptScore W3216307528C501734568 @default.
- W3216307528 hasConceptScore W3216307528C526805850 @default.
- W3216307528 hasConceptScore W3216307528C54355233 @default.
- W3216307528 hasConceptScore W3216307528C58471807 @default.
- W3216307528 hasConceptScore W3216307528C70721500 @default.
- W3216307528 hasConceptScore W3216307528C86803240 @default.
- W3216307528 hasConceptScore W3216307528C95623464 @default.
- W3216307528 hasIssue "44" @default.
- W3216307528 hasLocation W32163075281 @default.
- W3216307528 hasLocation W32163075282 @default.
- W3216307528 hasLocation W32163075283 @default.
- W3216307528 hasOpenAccess W3216307528 @default.
- W3216307528 hasPrimaryLocation W32163075281 @default.