Matches in SemOpenAlex for { <https://semopenalex.org/work/W3216308348> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W3216308348 abstract "The fitting of the dose-effect data of traditional Chinese medicine is of important meaning in the research of the dose-effect relationship of traditional Chinese medicine. Aiming at the problem that the dose-effect data of traditional Chinese medicine are of multi-dimensional structure and the problem that standard particle swarm optimization (PSO) method may fall into a radical or still state, in this paper, the authors apply softmax regression to the modeling of the fitting of the dose-effect data of traditional Chinese medicine, and suggest a novel method for the data fitting based on a hybrid particle swarm optimization algorithm with taboos and a heuristic strategy. In this study, Min-Max normalization method is used to normalize independent variables and dependent variables. Then the authors conduct a fast dimensional transformation by multiplying a transformation matrix on the right side of independent variable matrix. After that, a mathematic model for the fitting of dose-effect data is built in accordance with softmax regression including a regression formula and an evaluation function. In the end, the authors apply a novel hybrid PSO algorithm with taboos and a heuristic strategy to the fitting of the dose-effect data of traditional Chinese medicine. In the comparative experiments, the authors implemented hill climbing algorithm, conventional genetic algorithm, standard PSO algorithm and our method, and utilized these methods to conduct the fitting of the dose-effect data. Experimental results on the problem of dose-effect data fitting demonstrate that the proposed method significantly outperforms the 3 classic methods with respect to accuracy in the conducted experiments. And our method is more efficient than hill climbing algorithm and conventional genetic algorithm in comparative experiments." @default.
- W3216308348 created "2021-12-06" @default.
- W3216308348 creator A5006443452 @default.
- W3216308348 creator A5011688784 @default.
- W3216308348 creator A5013653310 @default.
- W3216308348 creator A5015470164 @default.
- W3216308348 creator A5066431435 @default.
- W3216308348 creator A5086967620 @default.
- W3216308348 date "2021-06-01" @default.
- W3216308348 modified "2023-10-05" @default.
- W3216308348 title "Softmax Regression and Particle Swarm Optimization with Taboos and a Heuristic Strategy for Dose-effect Data Fitting" @default.
- W3216308348 cites W3003572695 @default.
- W3216308348 cites W3021422085 @default.
- W3216308348 cites W3021894484 @default.
- W3216308348 doi "https://doi.org/10.1109/isctis51085.2021.00029" @default.
- W3216308348 hasPublicationYear "2021" @default.
- W3216308348 type Work @default.
- W3216308348 sameAs 3216308348 @default.
- W3216308348 citedByCount "0" @default.
- W3216308348 crossrefType "proceedings-article" @default.
- W3216308348 hasAuthorship W3216308348A5006443452 @default.
- W3216308348 hasAuthorship W3216308348A5011688784 @default.
- W3216308348 hasAuthorship W3216308348A5013653310 @default.
- W3216308348 hasAuthorship W3216308348A5015470164 @default.
- W3216308348 hasAuthorship W3216308348A5066431435 @default.
- W3216308348 hasAuthorship W3216308348A5086967620 @default.
- W3216308348 hasConcept C105795698 @default.
- W3216308348 hasConcept C11413529 @default.
- W3216308348 hasConcept C119857082 @default.
- W3216308348 hasConcept C126255220 @default.
- W3216308348 hasConcept C136886441 @default.
- W3216308348 hasConcept C144024400 @default.
- W3216308348 hasConcept C152877465 @default.
- W3216308348 hasConcept C154945302 @default.
- W3216308348 hasConcept C173801870 @default.
- W3216308348 hasConcept C188441871 @default.
- W3216308348 hasConcept C19165224 @default.
- W3216308348 hasConcept C33923547 @default.
- W3216308348 hasConcept C41008148 @default.
- W3216308348 hasConcept C50644808 @default.
- W3216308348 hasConcept C83546350 @default.
- W3216308348 hasConcept C85617194 @default.
- W3216308348 hasConceptScore W3216308348C105795698 @default.
- W3216308348 hasConceptScore W3216308348C11413529 @default.
- W3216308348 hasConceptScore W3216308348C119857082 @default.
- W3216308348 hasConceptScore W3216308348C126255220 @default.
- W3216308348 hasConceptScore W3216308348C136886441 @default.
- W3216308348 hasConceptScore W3216308348C144024400 @default.
- W3216308348 hasConceptScore W3216308348C152877465 @default.
- W3216308348 hasConceptScore W3216308348C154945302 @default.
- W3216308348 hasConceptScore W3216308348C173801870 @default.
- W3216308348 hasConceptScore W3216308348C188441871 @default.
- W3216308348 hasConceptScore W3216308348C19165224 @default.
- W3216308348 hasConceptScore W3216308348C33923547 @default.
- W3216308348 hasConceptScore W3216308348C41008148 @default.
- W3216308348 hasConceptScore W3216308348C50644808 @default.
- W3216308348 hasConceptScore W3216308348C83546350 @default.
- W3216308348 hasConceptScore W3216308348C85617194 @default.
- W3216308348 hasFunder F4320325626 @default.
- W3216308348 hasLocation W32163083481 @default.
- W3216308348 hasOpenAccess W3216308348 @default.
- W3216308348 hasPrimaryLocation W32163083481 @default.
- W3216308348 hasRelatedWork W2962876041 @default.
- W3216308348 hasRelatedWork W2980176872 @default.
- W3216308348 hasRelatedWork W3004997939 @default.
- W3216308348 hasRelatedWork W3090555870 @default.
- W3216308348 hasRelatedWork W3107204728 @default.
- W3216308348 hasRelatedWork W3155369511 @default.
- W3216308348 hasRelatedWork W4226420367 @default.
- W3216308348 hasRelatedWork W4287591324 @default.
- W3216308348 hasRelatedWork W4318239405 @default.
- W3216308348 hasRelatedWork W4362602249 @default.
- W3216308348 isParatext "false" @default.
- W3216308348 isRetracted "false" @default.
- W3216308348 magId "3216308348" @default.
- W3216308348 workType "article" @default.