Matches in SemOpenAlex for { <https://semopenalex.org/work/W3216353485> ?p ?o ?g. }
- W3216353485 endingPage "2076" @default.
- W3216353485 startingPage "2059" @default.
- W3216353485 abstract "Deep learning methods recently have gained growing interests and are extensively applied in the data-driven bearing fault diagnosis. However, current deep learning methods perform the bearing fault diagnosis in the form of deterministic classification, which overlook the uncertainties that inevitably exist in actual practice. To tackle this issue, in this research, we develop a probabilistic fault diagnosis framework that can account for the uncertainty effect in prediction, which bears practical significance. This framework uses the Gaussian process classifier (GPC) as the mainstay, which fundamentally is built upon the Bayesian inference. To establish the high-fidelity GPC, the tailored feature extraction method can be adaptively determined through the cross validation-based grid search upon a prespecified method pool consisting of various kernel principal component analysis (KPCA) methods and stacked autoencoder. This adaptive strategy can ensure the adequate GPC model training to accurately characterize the complex nonlinear relations between the data features and respective faults. Systematic case studies using the publicly accessible experimental rolling bearing dataset, i.e., CWRU bearing dataset are carried out to validate this new framework. The results clearly illustrate the unique capability of this framework in handling uncertainties. It is also found that this framework outperforms other well-established machine learning and deep learning models in terms of accuracy and robustness. Moreover, the sensor fusion that combines the spatial vibration measurements appears to be an effective technique to further enhance the fault diagnosis performance. By fully leveraging the probabilistic feature of the framework, the future research endeavor, such as the extended fault diagnosis using limited fault labels will be facilitated." @default.
- W3216353485 created "2021-12-06" @default.
- W3216353485 creator A5009856292 @default.
- W3216353485 creator A5040230440 @default.
- W3216353485 date "2021-12-02" @default.
- W3216353485 modified "2023-10-06" @default.
- W3216353485 title "Probabilistic bearing fault diagnosis using Gaussian process with tailored feature extraction" @default.
- W3216353485 cites W1581984155 @default.
- W3216353485 cites W1970328656 @default.
- W3216353485 cites W1973236629 @default.
- W3216353485 cites W1989746184 @default.
- W3216353485 cites W2008575214 @default.
- W3216353485 cites W2044078910 @default.
- W3216353485 cites W2162660442 @default.
- W3216353485 cites W2219715551 @default.
- W3216353485 cites W2258884143 @default.
- W3216353485 cites W2318145034 @default.
- W3216353485 cites W243674440 @default.
- W3216353485 cites W2440930599 @default.
- W3216353485 cites W2548976185 @default.
- W3216353485 cites W2731372149 @default.
- W3216353485 cites W2744790985 @default.
- W3216353485 cites W2747648188 @default.
- W3216353485 cites W2762761462 @default.
- W3216353485 cites W2765317657 @default.
- W3216353485 cites W2895063750 @default.
- W3216353485 cites W2904967895 @default.
- W3216353485 cites W2907541186 @default.
- W3216353485 cites W2916091221 @default.
- W3216353485 cites W2920611841 @default.
- W3216353485 cites W2939978363 @default.
- W3216353485 cites W2953260284 @default.
- W3216353485 cites W2970409657 @default.
- W3216353485 cites W2973800242 @default.
- W3216353485 cites W2981174158 @default.
- W3216353485 cites W2990027271 @default.
- W3216353485 cites W3000357022 @default.
- W3216353485 cites W3009880500 @default.
- W3216353485 cites W3016646640 @default.
- W3216353485 cites W3018048365 @default.
- W3216353485 cites W3025967384 @default.
- W3216353485 cites W3037775225 @default.
- W3216353485 cites W3038555484 @default.
- W3216353485 cites W3039045624 @default.
- W3216353485 cites W3043787446 @default.
- W3216353485 cites W3078132426 @default.
- W3216353485 cites W3107759795 @default.
- W3216353485 cites W3118572678 @default.
- W3216353485 cites W3126383074 @default.
- W3216353485 cites W3148740559 @default.
- W3216353485 cites W3161010649 @default.
- W3216353485 cites W3170268073 @default.
- W3216353485 cites W3174788865 @default.
- W3216353485 cites W3194169935 @default.
- W3216353485 cites W375527499 @default.
- W3216353485 cites W4211049957 @default.
- W3216353485 doi "https://doi.org/10.1007/s00170-021-08392-6" @default.
- W3216353485 hasPublicationYear "2021" @default.
- W3216353485 type Work @default.
- W3216353485 sameAs 3216353485 @default.
- W3216353485 citedByCount "8" @default.
- W3216353485 countsByYear W32163534852022 @default.
- W3216353485 countsByYear W32163534852023 @default.
- W3216353485 crossrefType "journal-article" @default.
- W3216353485 hasAuthorship W3216353485A5009856292 @default.
- W3216353485 hasAuthorship W3216353485A5040230440 @default.
- W3216353485 hasBestOaLocation W32163534852 @default.
- W3216353485 hasConcept C101738243 @default.
- W3216353485 hasConcept C104317684 @default.
- W3216353485 hasConcept C108583219 @default.
- W3216353485 hasConcept C119857082 @default.
- W3216353485 hasConcept C121332964 @default.
- W3216353485 hasConcept C124101348 @default.
- W3216353485 hasConcept C153180895 @default.
- W3216353485 hasConcept C154945302 @default.
- W3216353485 hasConcept C163716315 @default.
- W3216353485 hasConcept C185592680 @default.
- W3216353485 hasConcept C41008148 @default.
- W3216353485 hasConcept C49937458 @default.
- W3216353485 hasConcept C52622490 @default.
- W3216353485 hasConcept C55493867 @default.
- W3216353485 hasConcept C61326573 @default.
- W3216353485 hasConcept C62520636 @default.
- W3216353485 hasConcept C63479239 @default.
- W3216353485 hasConcept C95623464 @default.
- W3216353485 hasConceptScore W3216353485C101738243 @default.
- W3216353485 hasConceptScore W3216353485C104317684 @default.
- W3216353485 hasConceptScore W3216353485C108583219 @default.
- W3216353485 hasConceptScore W3216353485C119857082 @default.
- W3216353485 hasConceptScore W3216353485C121332964 @default.
- W3216353485 hasConceptScore W3216353485C124101348 @default.
- W3216353485 hasConceptScore W3216353485C153180895 @default.
- W3216353485 hasConceptScore W3216353485C154945302 @default.
- W3216353485 hasConceptScore W3216353485C163716315 @default.
- W3216353485 hasConceptScore W3216353485C185592680 @default.
- W3216353485 hasConceptScore W3216353485C41008148 @default.
- W3216353485 hasConceptScore W3216353485C49937458 @default.
- W3216353485 hasConceptScore W3216353485C52622490 @default.