Matches in SemOpenAlex for { <https://semopenalex.org/work/W3216358127> ?p ?o ?g. }
- W3216358127 endingPage "8723" @default.
- W3216358127 startingPage "8713" @default.
- W3216358127 abstract "Pulmonary metastasis (PM) is an independent risk factor affecting the prognosis of cervical patients, but it still lacks a prediction. This study aimed to develop machine learning-based predictive models for PM.A total of 22,766 patients diagnosed with or without PM from the Surveillance, Epidemiology, and End Results (SEER) database were enrolled in this study. The cohort was randomly split into a train set (70%) and a validation set (30%). In addition, 884 Chinese patients from two tertiary medical centers were included as an external validation set. Duplicated and useless candidate variables were excluded, and sixteen variables were included for the machine learning algorithm. We developed five predictive models, including the generalized linear model (GLM), random forest model (RFM), naive Bayesian model (NBM), artificial neural networks model (ANNM), and decision tree model (DTM). The predictive performance of these models was evaluated by the receiver operating characteristic (ROC) curve and calibration curve. The Cox proportional hazard model (CPHM) and competing risk model (CRM) were also included for survival outcome prediction.Of the patients included in the analysis, 2456 (4.38%) patients were diagnosed with PM. Age, organ-site metastasis (liver, bone, brain), distant lymph metastasis, tumor size, and pathology were the important predictors of PM. The RFM with 9 variables introduced was identified as the best predictive model for PM (AUC = 0.972, 95% CI: 0.958-0.986). The C-index for the CPHM and CRM was 0.626 (95% CI: 0.604-0.648) and 0.611 (95% CI: 0.586-0.636), respectively.The prediction algorithm derived by machine-learning-based methods shows a robust ability to predict PM. This result suggests that machine learning techniques have the potential to improve the development and validation of predictive modeling in cervical patients with PM." @default.
- W3216358127 created "2021-12-06" @default.
- W3216358127 creator A5006255404 @default.
- W3216358127 creator A5040597878 @default.
- W3216358127 creator A5047582845 @default.
- W3216358127 creator A5056168495 @default.
- W3216358127 creator A5074504754 @default.
- W3216358127 date "2021-11-01" @default.
- W3216358127 modified "2023-10-15" @default.
- W3216358127 title "Risk Assessment of Pulmonary Metastasis for Cervical Cancer Patients by Ensemble Learning Models: A Large Population Based Real-World Study" @default.
- W3216358127 cites W133031161 @default.
- W3216358127 cites W1986580240 @default.
- W3216358127 cites W1988314473 @default.
- W3216358127 cites W2035579898 @default.
- W3216358127 cites W2038247960 @default.
- W3216358127 cites W2070789376 @default.
- W3216358127 cites W2084595177 @default.
- W3216358127 cites W2098319794 @default.
- W3216358127 cites W2102982894 @default.
- W3216358127 cites W2107795068 @default.
- W3216358127 cites W2127441031 @default.
- W3216358127 cites W2134211788 @default.
- W3216358127 cites W2134440549 @default.
- W3216358127 cites W2157719711 @default.
- W3216358127 cites W2370300800 @default.
- W3216358127 cites W2419398742 @default.
- W3216358127 cites W2754160328 @default.
- W3216358127 cites W2785645041 @default.
- W3216358127 cites W2888205856 @default.
- W3216358127 cites W2898881288 @default.
- W3216358127 cites W2909503380 @default.
- W3216358127 cites W2917561541 @default.
- W3216358127 cites W2943491685 @default.
- W3216358127 cites W2982175117 @default.
- W3216358127 cites W3010521003 @default.
- W3216358127 cites W3014447915 @default.
- W3216358127 cites W3032917453 @default.
- W3216358127 cites W3037082682 @default.
- W3216358127 cites W3046184118 @default.
- W3216358127 cites W3048799074 @default.
- W3216358127 cites W3095689420 @default.
- W3216358127 cites W3099220846 @default.
- W3216358127 cites W4210581453 @default.
- W3216358127 cites W4243150065 @default.
- W3216358127 doi "https://doi.org/10.2147/ijgm.s338389" @default.
- W3216358127 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8628546" @default.
- W3216358127 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34853529" @default.
- W3216358127 hasPublicationYear "2021" @default.
- W3216358127 type Work @default.
- W3216358127 sameAs 3216358127 @default.
- W3216358127 citedByCount "1" @default.
- W3216358127 countsByYear W32163581272022 @default.
- W3216358127 crossrefType "journal-article" @default.
- W3216358127 hasAuthorship W3216358127A5006255404 @default.
- W3216358127 hasAuthorship W3216358127A5040597878 @default.
- W3216358127 hasAuthorship W3216358127A5047582845 @default.
- W3216358127 hasAuthorship W3216358127A5056168495 @default.
- W3216358127 hasAuthorship W3216358127A5074504754 @default.
- W3216358127 hasBestOaLocation W32163581271 @default.
- W3216358127 hasConcept C119857082 @default.
- W3216358127 hasConcept C121608353 @default.
- W3216358127 hasConcept C126322002 @default.
- W3216358127 hasConcept C143998085 @default.
- W3216358127 hasConcept C154945302 @default.
- W3216358127 hasConcept C169258074 @default.
- W3216358127 hasConcept C207103383 @default.
- W3216358127 hasConcept C2779013556 @default.
- W3216358127 hasConcept C2908647359 @default.
- W3216358127 hasConcept C41008148 @default.
- W3216358127 hasConcept C44249647 @default.
- W3216358127 hasConcept C50382708 @default.
- W3216358127 hasConcept C58471807 @default.
- W3216358127 hasConcept C71924100 @default.
- W3216358127 hasConcept C84525736 @default.
- W3216358127 hasConcept C99454951 @default.
- W3216358127 hasConceptScore W3216358127C119857082 @default.
- W3216358127 hasConceptScore W3216358127C121608353 @default.
- W3216358127 hasConceptScore W3216358127C126322002 @default.
- W3216358127 hasConceptScore W3216358127C143998085 @default.
- W3216358127 hasConceptScore W3216358127C154945302 @default.
- W3216358127 hasConceptScore W3216358127C169258074 @default.
- W3216358127 hasConceptScore W3216358127C207103383 @default.
- W3216358127 hasConceptScore W3216358127C2779013556 @default.
- W3216358127 hasConceptScore W3216358127C2908647359 @default.
- W3216358127 hasConceptScore W3216358127C41008148 @default.
- W3216358127 hasConceptScore W3216358127C44249647 @default.
- W3216358127 hasConceptScore W3216358127C50382708 @default.
- W3216358127 hasConceptScore W3216358127C58471807 @default.
- W3216358127 hasConceptScore W3216358127C71924100 @default.
- W3216358127 hasConceptScore W3216358127C84525736 @default.
- W3216358127 hasConceptScore W3216358127C99454951 @default.
- W3216358127 hasLocation W32163581271 @default.
- W3216358127 hasLocation W32163581272 @default.
- W3216358127 hasLocation W32163581273 @default.
- W3216358127 hasOpenAccess W3216358127 @default.
- W3216358127 hasPrimaryLocation W32163581271 @default.
- W3216358127 hasRelatedWork W2133235702 @default.
- W3216358127 hasRelatedWork W3134840015 @default.