Matches in SemOpenAlex for { <https://semopenalex.org/work/W3216372912> ?p ?o ?g. }
- W3216372912 endingPage "e29768" @default.
- W3216372912 startingPage "e29768" @default.
- W3216372912 abstract "A new illness can come to public attention through social media before it is medically defined, formally documented, or systematically studied. One example is a condition known as breast implant illness (BII), which has been extensively discussed on social media, although it is vaguely defined in the medical literature.The objective of this study is to construct a data analysis pipeline to understand emerging illnesses using social media data and to apply the pipeline to understand the key attributes of BII.We constructed a pipeline of social media data analysis using natural language processing and topic modeling. Mentions related to signs, symptoms, diseases, disorders, and medical procedures were extracted from social media data using the clinical Text Analysis and Knowledge Extraction System. We mapped the mentions to standard medical concepts and then summarized these mapped concepts as topics using latent Dirichlet allocation. Finally, we applied this pipeline to understand BII from several BII-dedicated social media sites.Our pipeline identified topics related to toxicity, cancer, and mental health issues that were highly associated with BII. Our pipeline also showed that cancers, autoimmune disorders, and mental health problems were emerging concerns associated with breast implants, based on social media discussions. Furthermore, the pipeline identified mentions such as rupture, infection, pain, and fatigue as common self-reported issues among the public, as well as concerns about toxicity from silicone implants.Our study could inspire future studies on the suggested symptoms and factors of BII. Our study provides the first analysis and derived knowledge of BII from social media using natural language processing techniques and demonstrates the potential of using social media information to better understand similar emerging illnesses." @default.
- W3216372912 created "2021-12-06" @default.
- W3216372912 creator A5019194010 @default.
- W3216372912 creator A5028997621 @default.
- W3216372912 creator A5029773488 @default.
- W3216372912 creator A5047987659 @default.
- W3216372912 creator A5074329575 @default.
- W3216372912 date "2021-11-29" @default.
- W3216372912 modified "2023-10-14" @default.
- W3216372912 title "A Pipeline to Understand Emerging Illness Via Social Media Data Analysis: Case Study on Breast Implant Illness" @default.
- W3216372912 cites W1984926150 @default.
- W3216372912 cites W1989046083 @default.
- W3216372912 cites W2026915515 @default.
- W3216372912 cites W2033640210 @default.
- W3216372912 cites W2054185486 @default.
- W3216372912 cites W2054455616 @default.
- W3216372912 cites W2065605915 @default.
- W3216372912 cites W2068483067 @default.
- W3216372912 cites W2095989828 @default.
- W3216372912 cites W2111990480 @default.
- W3216372912 cites W2114595254 @default.
- W3216372912 cites W2117239687 @default.
- W3216372912 cites W2143017621 @default.
- W3216372912 cites W2146089916 @default.
- W3216372912 cites W2147194983 @default.
- W3216372912 cites W2154413526 @default.
- W3216372912 cites W2159375797 @default.
- W3216372912 cites W2159583324 @default.
- W3216372912 cites W2195309679 @default.
- W3216372912 cites W2339651551 @default.
- W3216372912 cites W2460487756 @default.
- W3216372912 cites W2572954810 @default.
- W3216372912 cites W2736378022 @default.
- W3216372912 cites W2740228026 @default.
- W3216372912 cites W2741216199 @default.
- W3216372912 cites W2802780552 @default.
- W3216372912 cites W2897436841 @default.
- W3216372912 cites W2903993206 @default.
- W3216372912 cites W2912001732 @default.
- W3216372912 cites W2917157846 @default.
- W3216372912 cites W2918874254 @default.
- W3216372912 cites W2918997384 @default.
- W3216372912 cites W2942803227 @default.
- W3216372912 cites W2945564149 @default.
- W3216372912 cites W2980592076 @default.
- W3216372912 cites W2988464799 @default.
- W3216372912 cites W2991527047 @default.
- W3216372912 cites W2999823319 @default.
- W3216372912 cites W3011486546 @default.
- W3216372912 cites W3012190139 @default.
- W3216372912 cites W3014759436 @default.
- W3216372912 cites W3015671793 @default.
- W3216372912 cites W3023337246 @default.
- W3216372912 cites W3025534520 @default.
- W3216372912 cites W3034998801 @default.
- W3216372912 cites W3036887448 @default.
- W3216372912 cites W3041474538 @default.
- W3216372912 cites W3042491040 @default.
- W3216372912 cites W3090482705 @default.
- W3216372912 cites W3104749795 @default.
- W3216372912 cites W3152332785 @default.
- W3216372912 cites W4206938041 @default.
- W3216372912 cites W4233135949 @default.
- W3216372912 doi "https://doi.org/10.2196/29768" @default.
- W3216372912 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34847064" @default.
- W3216372912 hasPublicationYear "2021" @default.
- W3216372912 type Work @default.
- W3216372912 sameAs 3216372912 @default.
- W3216372912 citedByCount "2" @default.
- W3216372912 countsByYear W32163729122023 @default.
- W3216372912 crossrefType "journal-article" @default.
- W3216372912 hasAuthorship W3216372912A5019194010 @default.
- W3216372912 hasAuthorship W3216372912A5028997621 @default.
- W3216372912 hasAuthorship W3216372912A5029773488 @default.
- W3216372912 hasAuthorship W3216372912A5047987659 @default.
- W3216372912 hasAuthorship W3216372912A5074329575 @default.
- W3216372912 hasBestOaLocation W32163729121 @default.
- W3216372912 hasConcept C118552586 @default.
- W3216372912 hasConcept C134362201 @default.
- W3216372912 hasConcept C136764020 @default.
- W3216372912 hasConcept C15744967 @default.
- W3216372912 hasConcept C199360897 @default.
- W3216372912 hasConcept C2522767166 @default.
- W3216372912 hasConcept C2776674806 @default.
- W3216372912 hasConcept C2780801425 @default.
- W3216372912 hasConcept C41008148 @default.
- W3216372912 hasConcept C43521106 @default.
- W3216372912 hasConcept C518677369 @default.
- W3216372912 hasConcept C71924100 @default.
- W3216372912 hasConceptScore W3216372912C118552586 @default.
- W3216372912 hasConceptScore W3216372912C134362201 @default.
- W3216372912 hasConceptScore W3216372912C136764020 @default.
- W3216372912 hasConceptScore W3216372912C15744967 @default.
- W3216372912 hasConceptScore W3216372912C199360897 @default.
- W3216372912 hasConceptScore W3216372912C2522767166 @default.
- W3216372912 hasConceptScore W3216372912C2776674806 @default.
- W3216372912 hasConceptScore W3216372912C2780801425 @default.
- W3216372912 hasConceptScore W3216372912C41008148 @default.