Matches in SemOpenAlex for { <https://semopenalex.org/work/W3216387890> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W3216387890 endingPage "012043" @default.
- W3216387890 startingPage "012043" @default.
- W3216387890 abstract "Abstract With the most advanced classification algorithms in the technological platform, the computational power requirement is on the surge. The paper hereby presents computationally trivial algorithms to simplify the process of computational intensive classifications techniques, especially in the Motion Classification arena. The proposed methods prove crucial in acting as a lightweight and computationally fast stepping stone to a fundamentally more significant application of Motion indexing and classification, Action recognition, and predictive analysis of motion energy. The algorithms classify the motions into linear, circular, or periodic motion types by following an appropriate execution order. They consider the tracked motion path of the object of interest as a sequence and use it as a starting point to perform all operations, resulting in a feature that can be classified into separate classes. Using a single parameter for classifying the motion engenders a faster and relatively more straightforward route to motion identification and elicits the algorithm’s uniqueness. Two algorithms are proposed, namely, Angle Derivative Technique and Determinant Method for classifying the motion into two classes (linear & circular). On the other hand, a different algorithm identifies periodic motion using the principle of correlation on the motion sequences. All the algorithms show an average accuracy of over 95%. It also elicited an average processing time of 15.6 ms and 19.86 ms for Angle Derivative Method and Determinant Method, respectively, and 31.2 ms for periodic motion on Intel(R) Core(TM) i3-5005U CPU @ 2.00 GHz and 8GB RAM. A dataset of camera-captured videos consisting of three motion types is used for testing while the proposed methods are trained on a dataset of motion described by mathematical equations with added 3 σ noise levels." @default.
- W3216387890 created "2021-12-06" @default.
- W3216387890 creator A5034503603 @default.
- W3216387890 creator A5066031323 @default.
- W3216387890 creator A5078715796 @default.
- W3216387890 date "2021-11-01" @default.
- W3216387890 modified "2023-10-18" @default.
- W3216387890 title "Feature Engineering for Motion Classification in Machine Vision" @default.
- W3216387890 cites W1977863971 @default.
- W3216387890 cites W2076837173 @default.
- W3216387890 cites W2092463269 @default.
- W3216387890 cites W2151103935 @default.
- W3216387890 cites W2151618747 @default.
- W3216387890 cites W2163922914 @default.
- W3216387890 cites W2953303875 @default.
- W3216387890 cites W3006614102 @default.
- W3216387890 doi "https://doi.org/10.1088/1742-6596/2115/1/012043" @default.
- W3216387890 hasPublicationYear "2021" @default.
- W3216387890 type Work @default.
- W3216387890 sameAs 3216387890 @default.
- W3216387890 citedByCount "0" @default.
- W3216387890 crossrefType "journal-article" @default.
- W3216387890 hasAuthorship W3216387890A5034503603 @default.
- W3216387890 hasAuthorship W3216387890A5066031323 @default.
- W3216387890 hasAuthorship W3216387890A5078715796 @default.
- W3216387890 hasBestOaLocation W32163878901 @default.
- W3216387890 hasConcept C10161872 @default.
- W3216387890 hasConcept C104114177 @default.
- W3216387890 hasConcept C11413529 @default.
- W3216387890 hasConcept C124774092 @default.
- W3216387890 hasConcept C138885662 @default.
- W3216387890 hasConcept C146159030 @default.
- W3216387890 hasConcept C154945302 @default.
- W3216387890 hasConcept C2776401178 @default.
- W3216387890 hasConcept C2777036941 @default.
- W3216387890 hasConcept C31972630 @default.
- W3216387890 hasConcept C33923547 @default.
- W3216387890 hasConcept C41008148 @default.
- W3216387890 hasConcept C41895202 @default.
- W3216387890 hasConceptScore W3216387890C10161872 @default.
- W3216387890 hasConceptScore W3216387890C104114177 @default.
- W3216387890 hasConceptScore W3216387890C11413529 @default.
- W3216387890 hasConceptScore W3216387890C124774092 @default.
- W3216387890 hasConceptScore W3216387890C138885662 @default.
- W3216387890 hasConceptScore W3216387890C146159030 @default.
- W3216387890 hasConceptScore W3216387890C154945302 @default.
- W3216387890 hasConceptScore W3216387890C2776401178 @default.
- W3216387890 hasConceptScore W3216387890C2777036941 @default.
- W3216387890 hasConceptScore W3216387890C31972630 @default.
- W3216387890 hasConceptScore W3216387890C33923547 @default.
- W3216387890 hasConceptScore W3216387890C41008148 @default.
- W3216387890 hasConceptScore W3216387890C41895202 @default.
- W3216387890 hasIssue "1" @default.
- W3216387890 hasLocation W32163878901 @default.
- W3216387890 hasOpenAccess W3216387890 @default.
- W3216387890 hasPrimaryLocation W32163878901 @default.
- W3216387890 hasRelatedWork W1482467098 @default.
- W3216387890 hasRelatedWork W2067732419 @default.
- W3216387890 hasRelatedWork W2100868211 @default.
- W3216387890 hasRelatedWork W2122456626 @default.
- W3216387890 hasRelatedWork W2136787869 @default.
- W3216387890 hasRelatedWork W2144043954 @default.
- W3216387890 hasRelatedWork W2153928989 @default.
- W3216387890 hasRelatedWork W2395873996 @default.
- W3216387890 hasRelatedWork W2687972263 @default.
- W3216387890 hasRelatedWork W4321142835 @default.
- W3216387890 hasVolume "2115" @default.
- W3216387890 isParatext "false" @default.
- W3216387890 isRetracted "false" @default.
- W3216387890 magId "3216387890" @default.
- W3216387890 workType "article" @default.