Matches in SemOpenAlex for { <https://semopenalex.org/work/W3216406747> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W3216406747 abstract "Background: Prokaryotic viruses, which infect bacteria and archaea, are the most abundant and diverse biological entities in the biosphere. To understand their regulatory roles in various ecosystems and to harness the potential of bacteriophages for use in therapy, more knowledge of viral-host relationships is required. High-throughput sequencing and its application to the microbiome have offered new opportunities for computational approaches for predicting which hosts particular viruses can infect. However, there are two main challenges for computational host prediction. First, the empirically known virus-host relationships are very limited. Second, although sequence similarity between viruses and their prokaryote hosts have been used as a major feature for host prediction, the alignment is either missing or ambiguous in many cases. Thus, there is still a need to improve the accuracy of host prediction. Results: In this work, we present a semi-supervised learning model, named HostG, to conduct host prediction for novel viruses. We construct a knowledge graph by utilizing both virus-virus protein similarity and virus-host DNA sequence similarity. Then graph convolutional network (GCN) is adopted to exploit viruses with or without known hosts in training to enhance the learning ability. During the GCN training, we minimize the expected calibrated error (ECE) to ensure the confidence of the predictions. We tested HostG on both simulated and real sequencing data and compared its performance with other state-of-the-art methods specifcally designed for virus host classification (VHM-net, WIsH, PHP, HoPhage, RaFAH, vHULK, and VPF-Class). Conclusion: HostG outperforms other popular methods, demonstrating the efficacy of using a GCN-based semi-supervised learning approach. A particular advantage of HostG is its ability to predict hosts from new taxa." @default.
- W3216406747 created "2021-12-06" @default.
- W3216406747 creator A5081855118 @default.
- W3216406747 creator A5083607843 @default.
- W3216406747 date "2021-12-02" @default.
- W3216406747 modified "2023-09-27" @default.
- W3216406747 title "Predicting the hosts of prokaryotic viruses using GCN-based semi-supervised learning." @default.
- W3216406747 cites W1019830208 @default.
- W3216406747 cites W2052108128 @default.
- W3216406747 cites W2055585753 @default.
- W3216406747 cites W2083895686 @default.
- W3216406747 cites W2136130231 @default.
- W3216406747 cites W2143485490 @default.
- W3216406747 cites W2146341019 @default.
- W3216406747 cites W2153579005 @default.
- W3216406747 cites W2156911394 @default.
- W3216406747 cites W2159808296 @default.
- W3216406747 cites W2245444176 @default.
- W3216406747 cites W2274519180 @default.
- W3216406747 cites W2519887557 @default.
- W3216406747 cites W2559100382 @default.
- W3216406747 cites W2594750419 @default.
- W3216406747 cites W2610784236 @default.
- W3216406747 cites W2734399491 @default.
- W3216406747 cites W2786016794 @default.
- W3216406747 cites W2791956910 @default.
- W3216406747 cites W2794657941 @default.
- W3216406747 cites W2911844640 @default.
- W3216406747 cites W2943223175 @default.
- W3216406747 cites W2950718533 @default.
- W3216406747 cites W2964153729 @default.
- W3216406747 cites W2964212410 @default.
- W3216406747 cites W2966690030 @default.
- W3216406747 cites W2990632561 @default.
- W3216406747 cites W3032843171 @default.
- W3216406747 cites W3037496568 @default.
- W3216406747 cites W3112043731 @default.
- W3216406747 cites W3118981004 @default.
- W3216406747 cites W3121345102 @default.
- W3216406747 cites W3128761933 @default.
- W3216406747 cites W3149218648 @default.
- W3216406747 cites W3159261411 @default.
- W3216406747 cites W3171187312 @default.
- W3216406747 cites W3191098167 @default.
- W3216406747 hasPublicationYear "2021" @default.
- W3216406747 type Work @default.
- W3216406747 sameAs 3216406747 @default.
- W3216406747 citedByCount "0" @default.
- W3216406747 crossrefType "posted-content" @default.
- W3216406747 hasAuthorship W3216406747A5081855118 @default.
- W3216406747 hasAuthorship W3216406747A5083607843 @default.
- W3216406747 hasConcept C119857082 @default.
- W3216406747 hasConcept C126831891 @default.
- W3216406747 hasConcept C154945302 @default.
- W3216406747 hasConcept C165696696 @default.
- W3216406747 hasConcept C38652104 @default.
- W3216406747 hasConcept C41008148 @default.
- W3216406747 hasConcept C54355233 @default.
- W3216406747 hasConcept C70721500 @default.
- W3216406747 hasConcept C86803240 @default.
- W3216406747 hasConceptScore W3216406747C119857082 @default.
- W3216406747 hasConceptScore W3216406747C126831891 @default.
- W3216406747 hasConceptScore W3216406747C154945302 @default.
- W3216406747 hasConceptScore W3216406747C165696696 @default.
- W3216406747 hasConceptScore W3216406747C38652104 @default.
- W3216406747 hasConceptScore W3216406747C41008148 @default.
- W3216406747 hasConceptScore W3216406747C54355233 @default.
- W3216406747 hasConceptScore W3216406747C70721500 @default.
- W3216406747 hasConceptScore W3216406747C86803240 @default.
- W3216406747 hasLocation W32164067471 @default.
- W3216406747 hasOpenAccess W3216406747 @default.
- W3216406747 hasPrimaryLocation W32164067471 @default.
- W3216406747 isParatext "false" @default.
- W3216406747 isRetracted "false" @default.
- W3216406747 magId "3216406747" @default.
- W3216406747 workType "article" @default.