Matches in SemOpenAlex for { <https://semopenalex.org/work/W3216408770> ?p ?o ?g. }
- W3216408770 endingPage "4813" @default.
- W3216408770 startingPage "4813" @default.
- W3216408770 abstract "Debris flows are a major geological hazard in mountainous regions. For improving mitigation, it is important to study the spatial distribution and factors controlling debris flows. In the Bailong River Basin, central China, landslides and debris flows are very well developed due to the large differences in terrain, the complex geological environment, and concentrated rainfall. For analysis, 52 influencing factors, statistical, machine learning, remote sensing and GIS methods were used to analyze the spatial distribution and controlling factors of 652 debris flow catchments with different frequencies. The spatial distribution of these catchments was divided into three zones according to their differences in debris flow frequencies. A comprehensive analysis of the relationship between various factors and debris flows was made. Through parameter optimization and feature selection, the Extra Trees classifier performed the best, with an accuracy of 95.6%. The results show that lithology was the most important factor controlling debris flows in the study area (with a contribution of 26%), followed by landslide density and factors affecting slope stability (road density, fault density and peak ground acceleration, with a total contribution of 30%). The average annual frequency of daily rainfall > 20 mm was the most important triggering factor (with a contribution of 7%). Forest area and vegetation cover were also important controlling factors (with a total contribution of 9%), and they should be regarded as an important component of debris flow mitigation measures. The results are helpful to improve the understanding of factors influencing debris flows and provide a reference for the formulation of mitigation measures." @default.
- W3216408770 created "2021-12-06" @default.
- W3216408770 creator A5003252263 @default.
- W3216408770 creator A5008363264 @default.
- W3216408770 creator A5019963637 @default.
- W3216408770 creator A5020882296 @default.
- W3216408770 creator A5039232010 @default.
- W3216408770 creator A5068643571 @default.
- W3216408770 creator A5070715075 @default.
- W3216408770 date "2021-11-27" @default.
- W3216408770 modified "2023-10-07" @default.
- W3216408770 title "Modeling the Spatial Distribution of Debris Flows and Analysis of the Controlling Factors: A Machine Learning Approach" @default.
- W3216408770 cites W1216135704 @default.
- W3216408770 cites W1969129136 @default.
- W3216408770 cites W1969533753 @default.
- W3216408770 cites W1970747818 @default.
- W3216408770 cites W1978862859 @default.
- W3216408770 cites W1980322972 @default.
- W3216408770 cites W1981646498 @default.
- W3216408770 cites W1984055376 @default.
- W3216408770 cites W1984239941 @default.
- W3216408770 cites W1990082322 @default.
- W3216408770 cites W1990436032 @default.
- W3216408770 cites W2006336191 @default.
- W3216408770 cites W2014890520 @default.
- W3216408770 cites W2021675301 @default.
- W3216408770 cites W2024744504 @default.
- W3216408770 cites W2039924507 @default.
- W3216408770 cites W2039978396 @default.
- W3216408770 cites W2045801300 @default.
- W3216408770 cites W2048628678 @default.
- W3216408770 cites W2049005720 @default.
- W3216408770 cites W2050020422 @default.
- W3216408770 cites W2052623365 @default.
- W3216408770 cites W2055907175 @default.
- W3216408770 cites W2056063882 @default.
- W3216408770 cites W2060277301 @default.
- W3216408770 cites W2061021710 @default.
- W3216408770 cites W2064972007 @default.
- W3216408770 cites W2065424867 @default.
- W3216408770 cites W2077116169 @default.
- W3216408770 cites W2077496713 @default.
- W3216408770 cites W2077955269 @default.
- W3216408770 cites W2080486692 @default.
- W3216408770 cites W2082677306 @default.
- W3216408770 cites W2088386105 @default.
- W3216408770 cites W2089328954 @default.
- W3216408770 cites W2094457563 @default.
- W3216408770 cites W2097033979 @default.
- W3216408770 cites W2103439198 @default.
- W3216408770 cites W2105250188 @default.
- W3216408770 cites W2107063096 @default.
- W3216408770 cites W2112797099 @default.
- W3216408770 cites W2130976395 @default.
- W3216408770 cites W2143296882 @default.
- W3216408770 cites W2143426320 @default.
- W3216408770 cites W2155089900 @default.
- W3216408770 cites W2182709658 @default.
- W3216408770 cites W2236796472 @default.
- W3216408770 cites W2291871318 @default.
- W3216408770 cites W2346007200 @default.
- W3216408770 cites W2516158637 @default.
- W3216408770 cites W2521196168 @default.
- W3216408770 cites W2554390210 @default.
- W3216408770 cites W2566902732 @default.
- W3216408770 cites W2606728238 @default.
- W3216408770 cites W2752854613 @default.
- W3216408770 cites W2894645290 @default.
- W3216408770 cites W2895968456 @default.
- W3216408770 cites W2921976592 @default.
- W3216408770 cites W2943844914 @default.
- W3216408770 cites W2944353638 @default.
- W3216408770 cites W2950411148 @default.
- W3216408770 cites W2953312281 @default.
- W3216408770 cites W2981818224 @default.
- W3216408770 cites W2983347364 @default.
- W3216408770 cites W2992199894 @default.
- W3216408770 cites W3006116833 @default.
- W3216408770 cites W3010238421 @default.
- W3216408770 cites W3086117727 @default.
- W3216408770 cites W3092622205 @default.
- W3216408770 cites W3119521924 @default.
- W3216408770 cites W3127145352 @default.
- W3216408770 cites W3129034863 @default.
- W3216408770 cites W3157557747 @default.
- W3216408770 cites W3163899184 @default.
- W3216408770 cites W3201852602 @default.
- W3216408770 cites W3211791088 @default.
- W3216408770 doi "https://doi.org/10.3390/rs13234813" @default.
- W3216408770 hasPublicationYear "2021" @default.
- W3216408770 type Work @default.
- W3216408770 sameAs 3216408770 @default.
- W3216408770 citedByCount "10" @default.
- W3216408770 countsByYear W32164087702021 @default.
- W3216408770 countsByYear W32164087702022 @default.
- W3216408770 countsByYear W32164087702023 @default.
- W3216408770 crossrefType "journal-article" @default.
- W3216408770 hasAuthorship W3216408770A5003252263 @default.