Matches in SemOpenAlex for { <https://semopenalex.org/work/W3216410345> ?p ?o ?g. }
- W3216410345 abstract "Aim: Patients with ischemic stroke (IS), transient ischemic attack (TIA), and/or peripheral artery disease (PAD) represent a population with an increased risk of coronary artery disease. Prognostic risk assessment to identify those with the highest risk that may benefit from more intensified treatment remains challenging. To explore the feasibility and capability of machine learning (ML) to predict long-term adverse cardiac-related prognosis in patients with IS, TIA, and/or PAD. Methods: We analyzed 636 consecutive patients with a history of IS, TIA, and/or PAD. All patients underwent a coronary CT angiography (CCTA) scan. Thirty-five clinical data and 34 CCTA metrics underwent automated feature selection for ML model boosting. The clinical outcome included all-cause mortality (ACM) and major adverse cardiac events (MACE) (ACM, unstable angina requiring hospitalization, non-fatal myocardial infarction (MI), and revascularization 90 days after the index CCTA). Results: During the follow-up of 3.9 ± 1.6 years, 21 patients had unstable angina requiring hospitalization, eight had a MI, 23 had revascularization and 13 deaths. ML demonstrated a significant higher area-under-curve compared with the modified Duke index (MDI), segment stenosis score (SSS), segment involvement score (SIS), and Framingham risk score (FRS) for the prediction of ACM (ML:0.92 vs. MDI:0.66, SSS:0.68, SIS:0.67, FRS:0.51, all P < 0.001) and MACE (ML:0.84 vs. MDI:0.82, SSS:0.76, SIS:0.73, FRS:0.53, all P < 0.05). Conclusion: Among the patients with IS, TIA, and/or PAD, ML demonstrated a better capability of predicting ACM and MCAE than clinical scores and CCTA metrics." @default.
- W3216410345 created "2021-12-06" @default.
- W3216410345 creator A5003360183 @default.
- W3216410345 creator A5003562224 @default.
- W3216410345 creator A5024416390 @default.
- W3216410345 creator A5030572474 @default.
- W3216410345 creator A5031155639 @default.
- W3216410345 creator A5031466356 @default.
- W3216410345 creator A5038320478 @default.
- W3216410345 creator A5040141863 @default.
- W3216410345 creator A5058582019 @default.
- W3216410345 creator A5068803346 @default.
- W3216410345 creator A5085335313 @default.
- W3216410345 creator A5086347026 @default.
- W3216410345 creator A5088890936 @default.
- W3216410345 date "2021-11-25" @default.
- W3216410345 modified "2023-09-30" @default.
- W3216410345 title "Machine Learning to Predict Long-Term Cardiac-Relative Prognosis in Patients With Extra-Cardiac Vascular Disease" @default.
- W3216410345 cites W1260204519 @default.
- W3216410345 cites W1453335796 @default.
- W3216410345 cites W1565401187 @default.
- W3216410345 cites W1581517109 @default.
- W3216410345 cites W1979563039 @default.
- W3216410345 cites W2012942264 @default.
- W3216410345 cites W2022807949 @default.
- W3216410345 cites W2030322782 @default.
- W3216410345 cites W2031917779 @default.
- W3216410345 cites W2061003388 @default.
- W3216410345 cites W2064303441 @default.
- W3216410345 cites W2078226917 @default.
- W3216410345 cites W2090087329 @default.
- W3216410345 cites W2097811804 @default.
- W3216410345 cites W2103691739 @default.
- W3216410345 cites W2107165713 @default.
- W3216410345 cites W2109676405 @default.
- W3216410345 cites W2119150423 @default.
- W3216410345 cites W2128444946 @default.
- W3216410345 cites W2134343469 @default.
- W3216410345 cites W2140136269 @default.
- W3216410345 cites W2153785016 @default.
- W3216410345 cites W2165884492 @default.
- W3216410345 cites W2205229855 @default.
- W3216410345 cites W2328176404 @default.
- W3216410345 cites W2408866005 @default.
- W3216410345 cites W2741954207 @default.
- W3216410345 cites W2791336634 @default.
- W3216410345 cites W2980373782 @default.
- W3216410345 cites W2997906987 @default.
- W3216410345 cites W4239245513 @default.
- W3216410345 doi "https://doi.org/10.3389/fcvm.2021.771504" @default.
- W3216410345 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34901231" @default.
- W3216410345 hasPublicationYear "2021" @default.
- W3216410345 type Work @default.
- W3216410345 sameAs 3216410345 @default.
- W3216410345 citedByCount "3" @default.
- W3216410345 countsByYear W32164103452023 @default.
- W3216410345 crossrefType "journal-article" @default.
- W3216410345 hasAuthorship W3216410345A5003360183 @default.
- W3216410345 hasAuthorship W3216410345A5003562224 @default.
- W3216410345 hasAuthorship W3216410345A5024416390 @default.
- W3216410345 hasAuthorship W3216410345A5030572474 @default.
- W3216410345 hasAuthorship W3216410345A5031155639 @default.
- W3216410345 hasAuthorship W3216410345A5031466356 @default.
- W3216410345 hasAuthorship W3216410345A5038320478 @default.
- W3216410345 hasAuthorship W3216410345A5040141863 @default.
- W3216410345 hasAuthorship W3216410345A5058582019 @default.
- W3216410345 hasAuthorship W3216410345A5068803346 @default.
- W3216410345 hasAuthorship W3216410345A5085335313 @default.
- W3216410345 hasAuthorship W3216410345A5086347026 @default.
- W3216410345 hasAuthorship W3216410345A5088890936 @default.
- W3216410345 hasBestOaLocation W32164103451 @default.
- W3216410345 hasConcept C11783203 @default.
- W3216410345 hasConcept C126322002 @default.
- W3216410345 hasConcept C127413603 @default.
- W3216410345 hasConcept C148699463 @default.
- W3216410345 hasConcept C164705383 @default.
- W3216410345 hasConcept C2777785093 @default.
- W3216410345 hasConcept C2778213512 @default.
- W3216410345 hasConcept C2778425758 @default.
- W3216410345 hasConcept C2779134260 @default.
- W3216410345 hasConcept C2779464278 @default.
- W3216410345 hasConcept C2780400711 @default.
- W3216410345 hasConcept C2780645631 @default.
- W3216410345 hasConcept C2780739214 @default.
- W3216410345 hasConcept C500558357 @default.
- W3216410345 hasConcept C71924100 @default.
- W3216410345 hasConcept C78519656 @default.
- W3216410345 hasConceptScore W3216410345C11783203 @default.
- W3216410345 hasConceptScore W3216410345C126322002 @default.
- W3216410345 hasConceptScore W3216410345C127413603 @default.
- W3216410345 hasConceptScore W3216410345C148699463 @default.
- W3216410345 hasConceptScore W3216410345C164705383 @default.
- W3216410345 hasConceptScore W3216410345C2777785093 @default.
- W3216410345 hasConceptScore W3216410345C2778213512 @default.
- W3216410345 hasConceptScore W3216410345C2778425758 @default.
- W3216410345 hasConceptScore W3216410345C2779134260 @default.
- W3216410345 hasConceptScore W3216410345C2779464278 @default.
- W3216410345 hasConceptScore W3216410345C2780400711 @default.
- W3216410345 hasConceptScore W3216410345C2780645631 @default.
- W3216410345 hasConceptScore W3216410345C2780739214 @default.