Matches in SemOpenAlex for { <https://semopenalex.org/work/W3216447611> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W3216447611 endingPage "9" @default.
- W3216447611 startingPage "1" @default.
- W3216447611 abstract "The present spreading out of big data found the realization of AI and machine learning. With the rise of big data and machine learning, the idea of improving accuracy and enhancing the efficacy of AI applications is also gaining prominence. Machine learning solutions provide improved guard safety in hazardous traffic circumstances in the context of traffic applications. The existing architectures have various challenges, where data privacy is the foremost challenge for vulnerable road users (VRUs). The key reason for failure in traffic control for pedestrians is flawed in the privacy handling of the users. The user data are at risk and are prone to several privacy and security gaps. If an invader succeeds to infiltrate the setup, exposed data can be malevolently influenced, contrived, and misrepresented for illegitimate drives. In this study, an architecture is proposed based on machine learning to analyze and process big data efficiently in a secure environment. The proposed model considers the privacy of users during big data processing. The proposed architecture is a layered framework with a parallel and distributed module using machine learning on big data to achieve secure big data analytics. The proposed architecture designs a distinct unit for privacy management using a machine learning classifier. A stream processing unit is also integrated with the architecture to process the information. The proposed system is apprehended using real-time datasets from various sources and experimentally tested with reliable datasets that disclose the effectiveness of the proposed architecture. The data ingestion results are also highlighted along with training and validation results." @default.
- W3216447611 created "2021-12-06" @default.
- W3216447611 creator A5011375984 @default.
- W3216447611 creator A5027946901 @default.
- W3216447611 creator A5049069930 @default.
- W3216447611 creator A5079382054 @default.
- W3216447611 date "2021-11-28" @default.
- W3216447611 modified "2023-10-14" @default.
- W3216447611 title "Privacy-Aware Data Forensics of VRUs Using Machine Learning and Big Data Analytics" @default.
- W3216447611 cites W2036785686 @default.
- W3216447611 cites W2293066912 @default.
- W3216447611 cites W2344944736 @default.
- W3216447611 cites W2465851956 @default.
- W3216447611 cites W2496994734 @default.
- W3216447611 cites W2605236667 @default.
- W3216447611 cites W2729972587 @default.
- W3216447611 cites W2760741440 @default.
- W3216447611 cites W2778613407 @default.
- W3216447611 cites W2782916355 @default.
- W3216447611 cites W2792621138 @default.
- W3216447611 cites W2794596638 @default.
- W3216447611 cites W2802249969 @default.
- W3216447611 cites W2804329282 @default.
- W3216447611 cites W2883995567 @default.
- W3216447611 cites W2912423101 @default.
- W3216447611 cites W2921410104 @default.
- W3216447611 cites W2940690500 @default.
- W3216447611 cites W2948678706 @default.
- W3216447611 cites W2960280836 @default.
- W3216447611 cites W2962783540 @default.
- W3216447611 cites W2997061317 @default.
- W3216447611 cites W3011586404 @default.
- W3216447611 cites W3119601039 @default.
- W3216447611 cites W3122887154 @default.
- W3216447611 doi "https://doi.org/10.1155/2021/3320436" @default.
- W3216447611 hasPublicationYear "2021" @default.
- W3216447611 type Work @default.
- W3216447611 sameAs 3216447611 @default.
- W3216447611 citedByCount "1" @default.
- W3216447611 countsByYear W32164476112022 @default.
- W3216447611 crossrefType "journal-article" @default.
- W3216447611 hasAuthorship W3216447611A5011375984 @default.
- W3216447611 hasAuthorship W3216447611A5027946901 @default.
- W3216447611 hasAuthorship W3216447611A5049069930 @default.
- W3216447611 hasAuthorship W3216447611A5079382054 @default.
- W3216447611 hasBestOaLocation W32164476111 @default.
- W3216447611 hasConcept C119857082 @default.
- W3216447611 hasConcept C123201435 @default.
- W3216447611 hasConcept C123657996 @default.
- W3216447611 hasConcept C124101348 @default.
- W3216447611 hasConcept C142362112 @default.
- W3216447611 hasConcept C153349607 @default.
- W3216447611 hasConcept C154945302 @default.
- W3216447611 hasConcept C2522767166 @default.
- W3216447611 hasConcept C38652104 @default.
- W3216447611 hasConcept C41008148 @default.
- W3216447611 hasConcept C75684735 @default.
- W3216447611 hasConcept C79158427 @default.
- W3216447611 hasConceptScore W3216447611C119857082 @default.
- W3216447611 hasConceptScore W3216447611C123201435 @default.
- W3216447611 hasConceptScore W3216447611C123657996 @default.
- W3216447611 hasConceptScore W3216447611C124101348 @default.
- W3216447611 hasConceptScore W3216447611C142362112 @default.
- W3216447611 hasConceptScore W3216447611C153349607 @default.
- W3216447611 hasConceptScore W3216447611C154945302 @default.
- W3216447611 hasConceptScore W3216447611C2522767166 @default.
- W3216447611 hasConceptScore W3216447611C38652104 @default.
- W3216447611 hasConceptScore W3216447611C41008148 @default.
- W3216447611 hasConceptScore W3216447611C75684735 @default.
- W3216447611 hasConceptScore W3216447611C79158427 @default.
- W3216447611 hasFunder F4320323722 @default.
- W3216447611 hasLocation W32164476111 @default.
- W3216447611 hasLocation W32164476112 @default.
- W3216447611 hasOpenAccess W3216447611 @default.
- W3216447611 hasPrimaryLocation W32164476111 @default.
- W3216447611 hasRelatedWork W2337265393 @default.
- W3216447611 hasRelatedWork W2564805461 @default.
- W3216447611 hasRelatedWork W2777139086 @default.
- W3216447611 hasRelatedWork W2790702400 @default.
- W3216447611 hasRelatedWork W2972218761 @default.
- W3216447611 hasRelatedWork W2981494130 @default.
- W3216447611 hasRelatedWork W3014300295 @default.
- W3216447611 hasRelatedWork W3094115317 @default.
- W3216447611 hasRelatedWork W2551093110 @default.
- W3216447611 hasRelatedWork W3121830558 @default.
- W3216447611 hasVolume "2021" @default.
- W3216447611 isParatext "false" @default.
- W3216447611 isRetracted "false" @default.
- W3216447611 magId "3216447611" @default.
- W3216447611 workType "article" @default.