Matches in SemOpenAlex for { <https://semopenalex.org/work/W3216458294> ?p ?o ?g. }
- W3216458294 endingPage "105090" @default.
- W3216458294 startingPage "105090" @default.
- W3216458294 abstract "Alzheimer's disease (AD) is a gradually progressive neurodegenerative disease affecting cognition functions. Predicting the cognitive scores from neuroimage measures and identifying relevant imaging biomarkers are important research topics in the study of AD. Despite machine learning algorithms having many successful applications, the prediction model suffers from the so-called curse of dimensionality. Multi-task feature learning (MTFL) has helped tackle this problem incorporating the correlations among multiple clinical cognitive scores. However, MTFL neglects the inherent correlation among brain imaging measures. In order to better predict the cognitive scores and identify stable biomarkers, we first propose a generalized multi-task formulation framework that incorporates the task and feature correlation structures simultaneously. Second, we present a novel feature-aware sparsity-inducing norm (FAS-norm) penalty to incorporate a useful correlation between brain regions by exploiting correlations among features. Three multi-task learning models that incorporate the FAS-norm penalty are proposed following our framework. Finally, the algorithm based on the alternating direction method of multipliers (ADMM) is developed to optimize the non-smooth problems. We comprehensively evaluate the proposed models on the cross-sectional and longitudinal Alzheimer's disease neuroimaging initiative datasets. The inputs are the thickness measures and the volume measures of the cortical regions of interest. Compared with MTFL, our methods achieve an average decrease of 4.28% in overall error in the cross-sectional analysis and an average decrease of 7.97% in the Alzheimer's Disease Assessment Scale cognitive total score longitudinal analysis. Moreover, our methods identify sensitive and stable biomarkers to physicians, such as the hippocampus, lateral ventricle, and corpus callosum." @default.
- W3216458294 created "2021-12-06" @default.
- W3216458294 creator A5001846399 @default.
- W3216458294 creator A5026626215 @default.
- W3216458294 creator A5051848816 @default.
- W3216458294 creator A5053745515 @default.
- W3216458294 creator A5085833803 @default.
- W3216458294 date "2022-01-01" @default.
- W3216458294 modified "2023-10-18" @default.
- W3216458294 title "Dual feature correlation guided multi-task learning for Alzheimer's disease prediction" @default.
- W3216458294 cites W1509657154 @default.
- W3216458294 cites W1520811409 @default.
- W3216458294 cites W1542623975 @default.
- W3216458294 cites W1588839144 @default.
- W3216458294 cites W1847168837 @default.
- W3216458294 cites W1953027527 @default.
- W3216458294 cites W1969455604 @default.
- W3216458294 cites W1976076281 @default.
- W3216458294 cites W1982623426 @default.
- W3216458294 cites W1997228011 @default.
- W3216458294 cites W2000292092 @default.
- W3216458294 cites W2003690991 @default.
- W3216458294 cites W2004293194 @default.
- W3216458294 cites W2004347786 @default.
- W3216458294 cites W2009354197 @default.
- W3216458294 cites W2011291979 @default.
- W3216458294 cites W2024565039 @default.
- W3216458294 cites W2027928004 @default.
- W3216458294 cites W2031425398 @default.
- W3216458294 cites W2031967811 @default.
- W3216458294 cites W2038082462 @default.
- W3216458294 cites W2039018899 @default.
- W3216458294 cites W2044151123 @default.
- W3216458294 cites W2058414375 @default.
- W3216458294 cites W2061404811 @default.
- W3216458294 cites W2065180801 @default.
- W3216458294 cites W2067179209 @default.
- W3216458294 cites W2067696780 @default.
- W3216458294 cites W2079549965 @default.
- W3216458294 cites W2083635328 @default.
- W3216458294 cites W2084358449 @default.
- W3216458294 cites W2100556411 @default.
- W3216458294 cites W2101135654 @default.
- W3216458294 cites W2102544039 @default.
- W3216458294 cites W2103481737 @default.
- W3216458294 cites W2105086806 @default.
- W3216458294 cites W2110208125 @default.
- W3216458294 cites W2111552401 @default.
- W3216458294 cites W2115281122 @default.
- W3216458294 cites W2121369614 @default.
- W3216458294 cites W2126927216 @default.
- W3216458294 cites W2128431628 @default.
- W3216458294 cites W2131286474 @default.
- W3216458294 cites W2133703021 @default.
- W3216458294 cites W2151721316 @default.
- W3216458294 cites W2155963684 @default.
- W3216458294 cites W2157270343 @default.
- W3216458294 cites W2157848968 @default.
- W3216458294 cites W2223012410 @default.
- W3216458294 cites W2427544489 @default.
- W3216458294 cites W2488147991 @default.
- W3216458294 cites W2772024545 @default.
- W3216458294 cites W2779598069 @default.
- W3216458294 cites W2793104749 @default.
- W3216458294 cites W2793391328 @default.
- W3216458294 cites W2888918486 @default.
- W3216458294 cites W2895198603 @default.
- W3216458294 cites W2912452970 @default.
- W3216458294 cites W2996343685 @default.
- W3216458294 cites W3019052460 @default.
- W3216458294 cites W3045014407 @default.
- W3216458294 doi "https://doi.org/10.1016/j.compbiomed.2021.105090" @default.
- W3216458294 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34875406" @default.
- W3216458294 hasPublicationYear "2022" @default.
- W3216458294 type Work @default.
- W3216458294 sameAs 3216458294 @default.
- W3216458294 citedByCount "3" @default.
- W3216458294 countsByYear W32164582942022 @default.
- W3216458294 countsByYear W32164582942023 @default.
- W3216458294 crossrefType "journal-article" @default.
- W3216458294 hasAuthorship W3216458294A5001846399 @default.
- W3216458294 hasAuthorship W3216458294A5026626215 @default.
- W3216458294 hasAuthorship W3216458294A5051848816 @default.
- W3216458294 hasAuthorship W3216458294A5053745515 @default.
- W3216458294 hasAuthorship W3216458294A5085833803 @default.
- W3216458294 hasConcept C111030470 @default.
- W3216458294 hasConcept C117220453 @default.
- W3216458294 hasConcept C119857082 @default.
- W3216458294 hasConcept C138885662 @default.
- W3216458294 hasConcept C153180895 @default.
- W3216458294 hasConcept C153874254 @default.
- W3216458294 hasConcept C154945302 @default.
- W3216458294 hasConcept C15744967 @default.
- W3216458294 hasConcept C162324750 @default.
- W3216458294 hasConcept C169760540 @default.
- W3216458294 hasConcept C169900460 @default.
- W3216458294 hasConcept C187736073 @default.
- W3216458294 hasConcept C2524010 @default.