Matches in SemOpenAlex for { <https://semopenalex.org/work/W3216492741> ?p ?o ?g. }
- W3216492741 endingPage "163" @default.
- W3216492741 startingPage "156" @default.
- W3216492741 abstract "Electromagnetic resonance is the most important distinguishing property of metamaterials to examine many unusual phenomena. The resonant response of metamaterials can depend many parameters such as geometry, incident wave polarization. The estimation and the design of the unit cells can be challenging for the required application. The research on resonant behavior can yield promising applications. We investigate the resonance frequency of the chiral resonator as a unit of chiral metamaterial employing both traditional machine learning algorithms and convolutional deep neural networks. To our knowledge, this is the very first attempt on chiral metamaterials in that comparing the impact of various machine learning algorithms and deep learning model. The effect of geometrical parameters of the chiral resonator on the resonance frequency is studied. For this purpose, convolutional neural networks, support vector machines, naive Bayes, decision trees, random forests are employed for classification of resonance frequency. Extensive experiments are performed by varying training set percentages, epoch sizes, and data sets." @default.
- W3216492741 created "2021-12-06" @default.
- W3216492741 creator A5060746555 @default.
- W3216492741 creator A5061453031 @default.
- W3216492741 date "2021-11-30" @default.
- W3216492741 modified "2023-10-14" @default.
- W3216492741 title "The Prediction of Chiral Metamaterial Resonance using Convolutional Neural Networks and Conventional Machine Learning Algorithms" @default.
- W3216492741 cites W1658663095 @default.
- W3216492741 cites W1977554690 @default.
- W3216492741 cites W1979780362 @default.
- W3216492741 cites W1997098486 @default.
- W3216492741 cites W2005422315 @default.
- W3216492741 cites W2009785849 @default.
- W3216492741 cites W2017856020 @default.
- W3216492741 cites W2023632856 @default.
- W3216492741 cites W2027652501 @default.
- W3216492741 cites W2050216687 @default.
- W3216492741 cites W2058119712 @default.
- W3216492741 cites W2073092087 @default.
- W3216492741 cites W2095334240 @default.
- W3216492741 cites W2103384997 @default.
- W3216492741 cites W2112796928 @default.
- W3216492741 cites W2116724477 @default.
- W3216492741 cites W2121004025 @default.
- W3216492741 cites W2130139717 @default.
- W3216492741 cites W2139212933 @default.
- W3216492741 cites W2140121482 @default.
- W3216492741 cites W2149684865 @default.
- W3216492741 cites W2523138083 @default.
- W3216492741 cites W2743399036 @default.
- W3216492741 cites W2775280502 @default.
- W3216492741 cites W2806285847 @default.
- W3216492741 cites W2806536390 @default.
- W3216492741 cites W2891797827 @default.
- W3216492741 cites W2893572075 @default.
- W3216492741 cites W2897148785 @default.
- W3216492741 cites W2911964244 @default.
- W3216492741 cites W2914973752 @default.
- W3216492741 cites W2919115771 @default.
- W3216492741 cites W2923129012 @default.
- W3216492741 cites W2963748309 @default.
- W3216492741 cites W2964751504 @default.
- W3216492741 cites W2990477619 @default.
- W3216492741 cites W2995390865 @default.
- W3216492741 cites W2995593107 @default.
- W3216492741 cites W3001281877 @default.
- W3216492741 cites W3005155031 @default.
- W3216492741 cites W3037583678 @default.
- W3216492741 cites W3099853468 @default.
- W3216492741 cites W3105490206 @default.
- W3216492741 cites W3113125308 @default.
- W3216492741 cites W3132896017 @default.
- W3216492741 cites W3152018435 @default.
- W3216492741 cites W3213359943 @default.
- W3216492741 cites W4211229119 @default.
- W3216492741 cites W4236137412 @default.
- W3216492741 cites W4242229519 @default.
- W3216492741 doi "https://doi.org/10.22399/ijcesen.973726" @default.
- W3216492741 hasPublicationYear "2021" @default.
- W3216492741 type Work @default.
- W3216492741 sameAs 3216492741 @default.
- W3216492741 citedByCount "25" @default.
- W3216492741 countsByYear W32164927412022 @default.
- W3216492741 countsByYear W32164927412023 @default.
- W3216492741 crossrefType "journal-article" @default.
- W3216492741 hasAuthorship W3216492741A5060746555 @default.
- W3216492741 hasAuthorship W3216492741A5061453031 @default.
- W3216492741 hasBestOaLocation W32164927411 @default.
- W3216492741 hasConcept C107673813 @default.
- W3216492741 hasConcept C109214941 @default.
- W3216492741 hasConcept C110367647 @default.
- W3216492741 hasConcept C11413529 @default.
- W3216492741 hasConcept C119857082 @default.
- W3216492741 hasConcept C120665830 @default.
- W3216492741 hasConcept C121332964 @default.
- W3216492741 hasConcept C139210041 @default.
- W3216492741 hasConcept C154945302 @default.
- W3216492741 hasConcept C207201462 @default.
- W3216492741 hasConcept C41008148 @default.
- W3216492741 hasConcept C50644808 @default.
- W3216492741 hasConcept C81363708 @default.
- W3216492741 hasConcept C8642999 @default.
- W3216492741 hasConcept C97126364 @default.
- W3216492741 hasConceptScore W3216492741C107673813 @default.
- W3216492741 hasConceptScore W3216492741C109214941 @default.
- W3216492741 hasConceptScore W3216492741C110367647 @default.
- W3216492741 hasConceptScore W3216492741C11413529 @default.
- W3216492741 hasConceptScore W3216492741C119857082 @default.
- W3216492741 hasConceptScore W3216492741C120665830 @default.
- W3216492741 hasConceptScore W3216492741C121332964 @default.
- W3216492741 hasConceptScore W3216492741C139210041 @default.
- W3216492741 hasConceptScore W3216492741C154945302 @default.
- W3216492741 hasConceptScore W3216492741C207201462 @default.
- W3216492741 hasConceptScore W3216492741C41008148 @default.
- W3216492741 hasConceptScore W3216492741C50644808 @default.
- W3216492741 hasConceptScore W3216492741C81363708 @default.
- W3216492741 hasConceptScore W3216492741C8642999 @default.
- W3216492741 hasConceptScore W3216492741C97126364 @default.