Matches in SemOpenAlex for { <https://semopenalex.org/work/W3216498081> ?p ?o ?g. }
- W3216498081 endingPage "108096" @default.
- W3216498081 startingPage "108096" @default.
- W3216498081 abstract "Interval many-objective optimization problems (IMaOPS) are ubiquitous in practical applications. Therefore, it is of great significance to study the solving method for IMaOPS. However, there are fewer solving methods due to the uncertain interval of the objective function. In this paper, an improved NSGA-III algorithm (named LFOA-NSGA-III) is proposed to effectively solve these problems. Due to the uncertain interval in the IMaOPs, the original NSGA-III algorithm can ineffectively evaluate the relationship between the interval solution set and the reference point. So the matter-element extension model is introduced, which can make the optimized solution set close to the Pareto optimal solution. Furthermore, in order to improve the optimization performance and population diversity of the improved algorithm, the K-mean algorithm is used to solve the initial solution set, as well as a local fruit fly optimization algorithm (FOA) is combined with the genetic algorithm (GA). Finally, the LFOA-NSGA-III algorithm is empirically evaluated on eleven interval benchmark test problems and an unmanned aerial vehicles (UAVs) path planning problem. Through simulation comparisons with other different algorithms, it is concluded that the hyper-volume value, the imprecision value and the IGD value indicators are significantly better than other comparison algorithms. In addition, from a simulation experiment in application of the multi-UAVs path planning problem, it can be seen that the LFOA-NSGA-III algorithm is more effective and applicative in the IMaOPs." @default.
- W3216498081 created "2021-12-06" @default.
- W3216498081 creator A5039490153 @default.
- W3216498081 creator A5041070540 @default.
- W3216498081 creator A5053464930 @default.
- W3216498081 date "2022-01-01" @default.
- W3216498081 modified "2023-10-16" @default.
- W3216498081 title "Solving interval many-objective optimization problems by combination of NSGA-III and a local fruit fly optimization algorithm" @default.
- W3216498081 cites W2014075191 @default.
- W3216498081 cites W2022485595 @default.
- W3216498081 cites W2053900989 @default.
- W3216498081 cites W2093048649 @default.
- W3216498081 cites W2093195672 @default.
- W3216498081 cites W2126105956 @default.
- W3216498081 cites W2143381319 @default.
- W3216498081 cites W2144113342 @default.
- W3216498081 cites W2156247500 @default.
- W3216498081 cites W2345849791 @default.
- W3216498081 cites W2346170315 @default.
- W3216498081 cites W2419675785 @default.
- W3216498081 cites W2558150887 @default.
- W3216498081 cites W2560033242 @default.
- W3216498081 cites W2570917685 @default.
- W3216498081 cites W2591313086 @default.
- W3216498081 cites W2735649024 @default.
- W3216498081 cites W2739365735 @default.
- W3216498081 cites W2759720347 @default.
- W3216498081 cites W2781026149 @default.
- W3216498081 cites W2807496040 @default.
- W3216498081 cites W2902576888 @default.
- W3216498081 cites W2903030828 @default.
- W3216498081 cites W2905067259 @default.
- W3216498081 cites W2908150710 @default.
- W3216498081 cites W2908267943 @default.
- W3216498081 cites W2921693251 @default.
- W3216498081 cites W2922089800 @default.
- W3216498081 cites W2947240313 @default.
- W3216498081 cites W2969473637 @default.
- W3216498081 cites W2970135749 @default.
- W3216498081 cites W2993128518 @default.
- W3216498081 cites W3005219382 @default.
- W3216498081 cites W3006804507 @default.
- W3216498081 cites W3043089751 @default.
- W3216498081 cites W3092123241 @default.
- W3216498081 cites W3135065079 @default.
- W3216498081 cites W3168075691 @default.
- W3216498081 cites W3170285934 @default.
- W3216498081 cites W568502706 @default.
- W3216498081 cites W750165539 @default.
- W3216498081 doi "https://doi.org/10.1016/j.asoc.2021.108096" @default.
- W3216498081 hasPublicationYear "2022" @default.
- W3216498081 type Work @default.
- W3216498081 sameAs 3216498081 @default.
- W3216498081 citedByCount "5" @default.
- W3216498081 countsByYear W32164980812022 @default.
- W3216498081 countsByYear W32164980812023 @default.
- W3216498081 crossrefType "journal-article" @default.
- W3216498081 hasAuthorship W3216498081A5039490153 @default.
- W3216498081 hasAuthorship W3216498081A5041070540 @default.
- W3216498081 hasAuthorship W3216498081A5053464930 @default.
- W3216498081 hasConcept C11413529 @default.
- W3216498081 hasConcept C114614502 @default.
- W3216498081 hasConcept C126255220 @default.
- W3216498081 hasConcept C13280743 @default.
- W3216498081 hasConcept C144024400 @default.
- W3216498081 hasConcept C149923435 @default.
- W3216498081 hasConcept C159149176 @default.
- W3216498081 hasConcept C177264268 @default.
- W3216498081 hasConcept C185798385 @default.
- W3216498081 hasConcept C199360897 @default.
- W3216498081 hasConcept C205649164 @default.
- W3216498081 hasConcept C2777735758 @default.
- W3216498081 hasConcept C2778067643 @default.
- W3216498081 hasConcept C2908647359 @default.
- W3216498081 hasConcept C33923547 @default.
- W3216498081 hasConcept C41008148 @default.
- W3216498081 hasConcept C60033838 @default.
- W3216498081 hasConcept C68781425 @default.
- W3216498081 hasConcept C8880873 @default.
- W3216498081 hasConceptScore W3216498081C11413529 @default.
- W3216498081 hasConceptScore W3216498081C114614502 @default.
- W3216498081 hasConceptScore W3216498081C126255220 @default.
- W3216498081 hasConceptScore W3216498081C13280743 @default.
- W3216498081 hasConceptScore W3216498081C144024400 @default.
- W3216498081 hasConceptScore W3216498081C149923435 @default.
- W3216498081 hasConceptScore W3216498081C159149176 @default.
- W3216498081 hasConceptScore W3216498081C177264268 @default.
- W3216498081 hasConceptScore W3216498081C185798385 @default.
- W3216498081 hasConceptScore W3216498081C199360897 @default.
- W3216498081 hasConceptScore W3216498081C205649164 @default.
- W3216498081 hasConceptScore W3216498081C2777735758 @default.
- W3216498081 hasConceptScore W3216498081C2778067643 @default.
- W3216498081 hasConceptScore W3216498081C2908647359 @default.
- W3216498081 hasConceptScore W3216498081C33923547 @default.
- W3216498081 hasConceptScore W3216498081C41008148 @default.
- W3216498081 hasConceptScore W3216498081C60033838 @default.
- W3216498081 hasConceptScore W3216498081C68781425 @default.
- W3216498081 hasConceptScore W3216498081C8880873 @default.