Matches in SemOpenAlex for { <https://semopenalex.org/work/W3216576504> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W3216576504 endingPage "250" @default.
- W3216576504 startingPage "241" @default.
- W3216576504 abstract "Concrete is a composite material formed by cement, water, and aggregate. Concrete is an important material for any Civil Engineering project. Several concretes are produced as per the functional requirements using waste materials or by-products. Many researchers reported that these waste materials or by-products enhance the concrete properties, but the laboratory procedures for determining the concrete properties are time-consuming. Therefore, numerous researchers used statistical and artificial intelligence methods for predicting concrete properties. In the present research work, the compressive strength of GGBS mixed concrete is computed using AI technologies, namely Regression Analysis (RA), Support Vector Machine (SVM), Decision Tree (DT), and Artificial Neural Networks (ANNs). The cement content (CC), C/F ratio, w/c ratio, GGBS (in Kg & %), admixture, and age (days) are selected as input parameters to construct the RA, SVM, DT, ANNs models for computing the compressive strength of GGBS mixed concrete. The CS_MLR, Link_CS_SVM, 20LF_CS_DT, and GDM_CS_ANN models are identified as the best architectural AI models based on the performance of AI models. The performance of the best architectural AI models is compared to determine the optimum performance model. The correlation coefficient is computed for input and output variables. The compressive strength of GGBS mixed concrete is highly influenced by age (curing days). Comparing the performance of optimum performance AI models and models available in the literature study shows that the optimum performance AI model outperformed the published models." @default.
- W3216576504 created "2021-12-06" @default.
- W3216576504 creator A5019969567 @default.
- W3216576504 creator A5051274816 @default.
- W3216576504 creator A5081718794 @default.
- W3216576504 date "2021-11-30" @default.
- W3216576504 modified "2023-09-26" @default.
- W3216576504 title "Computation of Compressive Strength of GGBS Mixed Concrete using Machine Learning" @default.
- W3216576504 cites W2004566673 @default.
- W3216576504 cites W2008447415 @default.
- W3216576504 cites W2010773153 @default.
- W3216576504 cites W2022525371 @default.
- W3216576504 cites W2022627872 @default.
- W3216576504 cites W2054557393 @default.
- W3216576504 cites W2060832406 @default.
- W3216576504 cites W2061933243 @default.
- W3216576504 cites W2077321525 @default.
- W3216576504 cites W2091349963 @default.
- W3216576504 cites W2226886180 @default.
- W3216576504 cites W2556951775 @default.
- W3216576504 cites W3088621050 @default.
- W3216576504 cites W3095429034 @default.
- W3216576504 cites W3174224525 @default.
- W3216576504 cites W3182721635 @default.
- W3216576504 cites W4239510810 @default.
- W3216576504 doi "https://doi.org/10.35940/ijrte.d6631.1110421" @default.
- W3216576504 hasPublicationYear "2021" @default.
- W3216576504 type Work @default.
- W3216576504 sameAs 3216576504 @default.
- W3216576504 citedByCount "0" @default.
- W3216576504 crossrefType "journal-article" @default.
- W3216576504 hasAuthorship W3216576504A5019969567 @default.
- W3216576504 hasAuthorship W3216576504A5051274816 @default.
- W3216576504 hasAuthorship W3216576504A5081718794 @default.
- W3216576504 hasBestOaLocation W32165765041 @default.
- W3216576504 hasConcept C119857082 @default.
- W3216576504 hasConcept C12267149 @default.
- W3216576504 hasConcept C127413603 @default.
- W3216576504 hasConcept C159985019 @default.
- W3216576504 hasConcept C192562407 @default.
- W3216576504 hasConcept C30407753 @default.
- W3216576504 hasConcept C33819350 @default.
- W3216576504 hasConcept C41008148 @default.
- W3216576504 hasConcept C4679612 @default.
- W3216576504 hasConcept C50644808 @default.
- W3216576504 hasConcept C523993062 @default.
- W3216576504 hasConcept C66938386 @default.
- W3216576504 hasConceptScore W3216576504C119857082 @default.
- W3216576504 hasConceptScore W3216576504C12267149 @default.
- W3216576504 hasConceptScore W3216576504C127413603 @default.
- W3216576504 hasConceptScore W3216576504C159985019 @default.
- W3216576504 hasConceptScore W3216576504C192562407 @default.
- W3216576504 hasConceptScore W3216576504C30407753 @default.
- W3216576504 hasConceptScore W3216576504C33819350 @default.
- W3216576504 hasConceptScore W3216576504C41008148 @default.
- W3216576504 hasConceptScore W3216576504C4679612 @default.
- W3216576504 hasConceptScore W3216576504C50644808 @default.
- W3216576504 hasConceptScore W3216576504C523993062 @default.
- W3216576504 hasConceptScore W3216576504C66938386 @default.
- W3216576504 hasIssue "4" @default.
- W3216576504 hasLocation W32165765041 @default.
- W3216576504 hasLocation W32165765042 @default.
- W3216576504 hasOpenAccess W3216576504 @default.
- W3216576504 hasPrimaryLocation W32165765041 @default.
- W3216576504 hasRelatedWork W1983027792 @default.
- W3216576504 hasRelatedWork W2024800762 @default.
- W3216576504 hasRelatedWork W2031912511 @default.
- W3216576504 hasRelatedWork W2116594109 @default.
- W3216576504 hasRelatedWork W2399601691 @default.
- W3216576504 hasRelatedWork W2620053975 @default.
- W3216576504 hasRelatedWork W2945935838 @default.
- W3216576504 hasRelatedWork W2968801727 @default.
- W3216576504 hasRelatedWork W3003614653 @default.
- W3216576504 hasRelatedWork W3036535175 @default.
- W3216576504 hasVolume "10" @default.
- W3216576504 isParatext "false" @default.
- W3216576504 isRetracted "false" @default.
- W3216576504 magId "3216576504" @default.
- W3216576504 workType "article" @default.