Matches in SemOpenAlex for { <https://semopenalex.org/work/W3216577089> ?p ?o ?g. }
Showing items 1 to 50 of
50
with 100 items per page.
- W3216577089 abstract "Bayesian Optimization (BO) is a global optimization framework that uses bayesian surrogate models such as Gaussian Processes (GP) to address black-box problems [1], [2] with costly-to-evaluate objective functions. Bayesian models and especially GPs are attractive for their ability to provide the uncertainty over their predictions. Using this information, one can build an indicator of utility for a point to be simulated. This indicator, named Infill Criterion (IC) or Acquisition Function(AF), is used to guide the optimization process and find valuable new point(s) to be exactly evaluated. Based on this procedure, Joneset al.[3] introduce the Efficient Global Optimization (EGO) algorithm that uses the Expected Improvement (EI) AF. Many approaches emerged from the idea of making EGO parallel. In particular, Ginsbourger et al.[4] introduced the q-dimensional EI criterion (q-EI), able to provide qcandidate points when optimized. In [5], Ginsbourger et al.write that even though q-EI and its optimization methods are mathematically founded, it is not ”mathematically tractable beyond a few dimensions”. This motivates the introduction of the Kriging Believer (KB) and Constant Liar (CL) heuristics also presented in [5]. The two heuristics allow to approximate the optimization of q-EI at a much lower time cost. EGO using q-EI is called q-EGO in the following. Many other approaches based on EI orq-EI are constructed. For example, in [6] the authors use Infinitesimal Perturbation Analysis (IPA) to construct a gradient estimator of the q-EI surface, and a multi-start heuristic to find the set of points to evaluate. Zhanet al.[7] use a niching strategy to locate several optimal areas of the single point EI. Marminet al.[8] write the analytical form of the multi-point EI gradient to be able to optimize the function with gradient information and reduce the computational cost compared to sequential heuristics or MonteCarlo sampling of [5]. However, none of the methods are efficient on parallel architectures including dozens of processing units. The creation of the batch of candidates is often time consuming, and the GP model fitting cost increases fast. The reference q-EGO algorithm has been experimented and driven to its limits in Briffoteauxet al.[9]. The analysis revealed that q-EGO performs well with small budgets (i.e. number of calls to the objective function) and small batches (q≤8). However, it suffers from early stagnation, poor scalability, and budget seems misspent since increasing q doesnot necessarily improve the final target for a given number of algorithm iterations (called cycles). The limits of q-EGO comes from at least two aspects: (1) we need to updateqtimes the model toprovideqcandidate and the Kriging model becomes extremely time consuming to fit as the size ofthe learning set is increased; (2) the way the candidates are selected is not suited for large batches." @default.
- W3216577089 created "2021-12-06" @default.
- W3216577089 creator A5017188444 @default.
- W3216577089 creator A5075398977 @default.
- W3216577089 creator A5076242888 @default.
- W3216577089 creator A5079928461 @default.
- W3216577089 date "2021-06-21" @default.
- W3216577089 modified "2023-09-23" @default.
- W3216577089 title "Space Partitioning with multiple models for Parallel Bayesian Optimization" @default.
- W3216577089 hasPublicationYear "2021" @default.
- W3216577089 type Work @default.
- W3216577089 sameAs 3216577089 @default.
- W3216577089 citedByCount "0" @default.
- W3216577089 crossrefType "proceedings-article" @default.
- W3216577089 hasAuthorship W3216577089A5017188444 @default.
- W3216577089 hasAuthorship W3216577089A5075398977 @default.
- W3216577089 hasAuthorship W3216577089A5076242888 @default.
- W3216577089 hasAuthorship W3216577089A5079928461 @default.
- W3216577089 hasBestOaLocation W32165770891 @default.
- W3216577089 hasConcept C107673813 @default.
- W3216577089 hasConcept C111919701 @default.
- W3216577089 hasConcept C154945302 @default.
- W3216577089 hasConcept C2778049539 @default.
- W3216577089 hasConcept C2778572836 @default.
- W3216577089 hasConcept C41008148 @default.
- W3216577089 hasConceptScore W3216577089C107673813 @default.
- W3216577089 hasConceptScore W3216577089C111919701 @default.
- W3216577089 hasConceptScore W3216577089C154945302 @default.
- W3216577089 hasConceptScore W3216577089C2778049539 @default.
- W3216577089 hasConceptScore W3216577089C2778572836 @default.
- W3216577089 hasConceptScore W3216577089C41008148 @default.
- W3216577089 hasLocation W32165770891 @default.
- W3216577089 hasLocation W32165770892 @default.
- W3216577089 hasLocation W32165770893 @default.
- W3216577089 hasOpenAccess W3216577089 @default.
- W3216577089 hasPrimaryLocation W32165770891 @default.
- W3216577089 hasRelatedWork W2099201756 @default.
- W3216577089 hasRelatedWork W2561476038 @default.
- W3216577089 hasRelatedWork W2912451170 @default.
- W3216577089 hasRelatedWork W3120587751 @default.
- W3216577089 hasRelatedWork W3190508124 @default.
- W3216577089 hasRelatedWork W3196316500 @default.
- W3216577089 hasRelatedWork W3199608561 @default.
- W3216577089 hasRelatedWork W3203397300 @default.
- W3216577089 hasRelatedWork W4366835692 @default.
- W3216577089 hasRelatedWork W4385412009 @default.
- W3216577089 isParatext "false" @default.
- W3216577089 isRetracted "false" @default.
- W3216577089 magId "3216577089" @default.
- W3216577089 workType "article" @default.