Matches in SemOpenAlex for { <https://semopenalex.org/work/W3216578860> ?p ?o ?g. }
- W3216578860 endingPage "108110" @default.
- W3216578860 startingPage "108110" @default.
- W3216578860 abstract "Highly accurate forecasting of particulate matter concentration (PMC) is essential and effective for establishing a reliable air pollution early warning system and has both theoretical and practical significance. To meet this demand, a novel multi-scale hybrid learning framework based on robust local mean decomposition (RLMD) and moving window (MW) ensemble strategy is developed for PM2.5 and PM10 forecasting. In this architecture, the RLMD is adopted to adaptively decompose the PMC time series (PMCTS) into several production functions and one residue with different frequencies. These subseries are simpler than the original PMCTS, but they still work alongside mode aliasing. Thus, following the well-established “linear and nonlinear” modeling philosophy, a novel hybrid learning framework, composed of the autoregressive integrated moving average (ARIMA) and combined kernel function relevance vector machine (RVMcom), is proposed to capture both the linear and nonlinear patterns in the subseries. To obtain better final outputs, based on the definition of the ensemble improvement degree, the MW ensemble method is used to merge the forecasting results of all subseries. A comprehensive experiment is conducted using PM2.5 and PM10 datasets from four municipalities in China to investigate the forecasting performance of our proposed framework, and the results demonstrate that our proposed RLMD-ARIMA–RVMcom-MW (R-A&Rcom-M) model is superior to other considered methods in terms of forecasting accuracy and generalization ability. This means that the developed forecasting architecture has a great application value in the field of PMCTS prediction." @default.
- W3216578860 created "2021-12-06" @default.
- W3216578860 creator A5004641057 @default.
- W3216578860 creator A5014145615 @default.
- W3216578860 creator A5031131999 @default.
- W3216578860 creator A5055524868 @default.
- W3216578860 date "2022-01-01" @default.
- W3216578860 modified "2023-10-17" @default.
- W3216578860 title "Daily PM2.5 and PM10 forecasting using linear and nonlinear modeling framework based on robust local mean decomposition and moving window ensemble strategy" @default.
- W3216578860 cites W1661370443 @default.
- W3216578860 cites W1973048907 @default.
- W3216578860 cites W1988845048 @default.
- W3216578860 cites W1990092328 @default.
- W3216578860 cites W2007221293 @default.
- W3216578860 cites W2012596530 @default.
- W3216578860 cites W2045768730 @default.
- W3216578860 cites W2117014758 @default.
- W3216578860 cites W2120390927 @default.
- W3216578860 cites W2140554090 @default.
- W3216578860 cites W2140735975 @default.
- W3216578860 cites W2290404289 @default.
- W3216578860 cites W2605606145 @default.
- W3216578860 cites W2764126455 @default.
- W3216578860 cites W2768063465 @default.
- W3216578860 cites W2781854549 @default.
- W3216578860 cites W2795470013 @default.
- W3216578860 cites W2799286067 @default.
- W3216578860 cites W2812669263 @default.
- W3216578860 cites W2890969757 @default.
- W3216578860 cites W2898307789 @default.
- W3216578860 cites W2901469953 @default.
- W3216578860 cites W2905610885 @default.
- W3216578860 cites W2912460500 @default.
- W3216578860 cites W2924835443 @default.
- W3216578860 cites W2936386745 @default.
- W3216578860 cites W2936792753 @default.
- W3216578860 cites W2938161931 @default.
- W3216578860 cites W2945418845 @default.
- W3216578860 cites W2945640320 @default.
- W3216578860 cites W2949262395 @default.
- W3216578860 cites W2951822430 @default.
- W3216578860 cites W2955242166 @default.
- W3216578860 cites W2979950223 @default.
- W3216578860 cites W2981927324 @default.
- W3216578860 cites W2989725176 @default.
- W3216578860 cites W2994255497 @default.
- W3216578860 cites W2994533603 @default.
- W3216578860 cites W3007203411 @default.
- W3216578860 cites W3007639498 @default.
- W3216578860 cites W3013533281 @default.
- W3216578860 cites W3013755684 @default.
- W3216578860 cites W3021466180 @default.
- W3216578860 cites W3025026054 @default.
- W3216578860 cites W3038323027 @default.
- W3216578860 cites W3046561009 @default.
- W3216578860 cites W3047937490 @default.
- W3216578860 cites W3049152851 @default.
- W3216578860 cites W3083243855 @default.
- W3216578860 cites W3083574374 @default.
- W3216578860 cites W3088465717 @default.
- W3216578860 cites W3088707425 @default.
- W3216578860 cites W3095076149 @default.
- W3216578860 cites W3105812722 @default.
- W3216578860 cites W3106662512 @default.
- W3216578860 cites W3107183759 @default.
- W3216578860 cites W3119672720 @default.
- W3216578860 cites W3120636592 @default.
- W3216578860 cites W3121278066 @default.
- W3216578860 cites W3124650867 @default.
- W3216578860 cites W3141258397 @default.
- W3216578860 doi "https://doi.org/10.1016/j.asoc.2021.108110" @default.
- W3216578860 hasPublicationYear "2022" @default.
- W3216578860 type Work @default.
- W3216578860 sameAs 3216578860 @default.
- W3216578860 citedByCount "11" @default.
- W3216578860 countsByYear W32165788602022 @default.
- W3216578860 countsByYear W32165788602023 @default.
- W3216578860 crossrefType "journal-article" @default.
- W3216578860 hasAuthorship W3216578860A5004641057 @default.
- W3216578860 hasAuthorship W3216578860A5014145615 @default.
- W3216578860 hasAuthorship W3216578860A5031131999 @default.
- W3216578860 hasAuthorship W3216578860A5055524868 @default.
- W3216578860 hasConcept C119857082 @default.
- W3216578860 hasConcept C121332964 @default.
- W3216578860 hasConcept C151406439 @default.
- W3216578860 hasConcept C154945302 @default.
- W3216578860 hasConcept C158622935 @default.
- W3216578860 hasConcept C175706884 @default.
- W3216578860 hasConcept C24338571 @default.
- W3216578860 hasConcept C31972630 @default.
- W3216578860 hasConcept C41008148 @default.
- W3216578860 hasConcept C45942800 @default.
- W3216578860 hasConcept C62520636 @default.
- W3216578860 hasConceptScore W3216578860C119857082 @default.
- W3216578860 hasConceptScore W3216578860C121332964 @default.
- W3216578860 hasConceptScore W3216578860C151406439 @default.
- W3216578860 hasConceptScore W3216578860C154945302 @default.
- W3216578860 hasConceptScore W3216578860C158622935 @default.