Matches in SemOpenAlex for { <https://semopenalex.org/work/W3216578925> ?p ?o ?g. }
- W3216578925 endingPage "109186" @default.
- W3216578925 startingPage "109186" @default.
- W3216578925 abstract "This paper, for the first time, proposed an axial elastic modulus degradation prediction method of [0m/90n]s cross-ply laminates using a machine learning (ML) model. The data set of the ML model is established based on the published experiments and a small amount of finite element analysis (FEA) results. The effect of data size on the accuracy of ML prediction is also discussed. The proposed ML model focuses on the process of translating a mechanical problem of damage into a non-linear regression problem of ML, and the mapping between the input and output data, which is hopefully considered for some complex mechanical problems of composites. Meanwhile, the ML method also provides accurate and efficient solution for the engineering practice." @default.
- W3216578925 created "2021-12-06" @default.
- W3216578925 creator A5015695120 @default.
- W3216578925 creator A5043913921 @default.
- W3216578925 creator A5067517498 @default.
- W3216578925 creator A5068396140 @default.
- W3216578925 creator A5070981491 @default.
- W3216578925 creator A5074389250 @default.
- W3216578925 creator A5080683538 @default.
- W3216578925 creator A5083691875 @default.
- W3216578925 date "2022-02-01" @default.
- W3216578925 modified "2023-10-06" @default.
- W3216578925 title "Prediction of stiffness degradation based on machine learning: Axial elastic modulus of [0m /90n ]s composite laminates" @default.
- W3216578925 cites W1970093588 @default.
- W3216578925 cites W1996389021 @default.
- W3216578925 cites W2011279426 @default.
- W3216578925 cites W2026009676 @default.
- W3216578925 cites W2027045347 @default.
- W3216578925 cites W2034287504 @default.
- W3216578925 cites W2038831228 @default.
- W3216578925 cites W2047747039 @default.
- W3216578925 cites W2056592748 @default.
- W3216578925 cites W2058487947 @default.
- W3216578925 cites W2060710784 @default.
- W3216578925 cites W2338402873 @default.
- W3216578925 cites W2504618076 @default.
- W3216578925 cites W2754080318 @default.
- W3216578925 cites W2766966300 @default.
- W3216578925 cites W2803170602 @default.
- W3216578925 cites W2904396188 @default.
- W3216578925 cites W2907432741 @default.
- W3216578925 cites W2914704785 @default.
- W3216578925 cites W2922787593 @default.
- W3216578925 cites W2944777409 @default.
- W3216578925 cites W2967379752 @default.
- W3216578925 cites W3001396333 @default.
- W3216578925 cites W3004203398 @default.
- W3216578925 cites W3005517003 @default.
- W3216578925 doi "https://doi.org/10.1016/j.compscitech.2021.109186" @default.
- W3216578925 hasPublicationYear "2022" @default.
- W3216578925 type Work @default.
- W3216578925 sameAs 3216578925 @default.
- W3216578925 citedByCount "8" @default.
- W3216578925 countsByYear W32165789252022 @default.
- W3216578925 countsByYear W32165789252023 @default.
- W3216578925 crossrefType "journal-article" @default.
- W3216578925 hasAuthorship W3216578925A5015695120 @default.
- W3216578925 hasAuthorship W3216578925A5043913921 @default.
- W3216578925 hasAuthorship W3216578925A5067517498 @default.
- W3216578925 hasAuthorship W3216578925A5068396140 @default.
- W3216578925 hasAuthorship W3216578925A5070981491 @default.
- W3216578925 hasAuthorship W3216578925A5074389250 @default.
- W3216578925 hasAuthorship W3216578925A5080683538 @default.
- W3216578925 hasAuthorship W3216578925A5083691875 @default.
- W3216578925 hasConcept C104779481 @default.
- W3216578925 hasConcept C111919701 @default.
- W3216578925 hasConcept C119857082 @default.
- W3216578925 hasConcept C127413603 @default.
- W3216578925 hasConcept C135628077 @default.
- W3216578925 hasConcept C145922259 @default.
- W3216578925 hasConcept C159985019 @default.
- W3216578925 hasConcept C177264268 @default.
- W3216578925 hasConcept C192562407 @default.
- W3216578925 hasConcept C193867417 @default.
- W3216578925 hasConcept C199360897 @default.
- W3216578925 hasConcept C2779372316 @default.
- W3216578925 hasConcept C2779679103 @default.
- W3216578925 hasConcept C41008148 @default.
- W3216578925 hasConcept C42003148 @default.
- W3216578925 hasConcept C43486711 @default.
- W3216578925 hasConcept C48921125 @default.
- W3216578925 hasConcept C66938386 @default.
- W3216578925 hasConcept C76155785 @default.
- W3216578925 hasConcept C98045186 @default.
- W3216578925 hasConceptScore W3216578925C104779481 @default.
- W3216578925 hasConceptScore W3216578925C111919701 @default.
- W3216578925 hasConceptScore W3216578925C119857082 @default.
- W3216578925 hasConceptScore W3216578925C127413603 @default.
- W3216578925 hasConceptScore W3216578925C135628077 @default.
- W3216578925 hasConceptScore W3216578925C145922259 @default.
- W3216578925 hasConceptScore W3216578925C159985019 @default.
- W3216578925 hasConceptScore W3216578925C177264268 @default.
- W3216578925 hasConceptScore W3216578925C192562407 @default.
- W3216578925 hasConceptScore W3216578925C193867417 @default.
- W3216578925 hasConceptScore W3216578925C199360897 @default.
- W3216578925 hasConceptScore W3216578925C2779372316 @default.
- W3216578925 hasConceptScore W3216578925C2779679103 @default.
- W3216578925 hasConceptScore W3216578925C41008148 @default.
- W3216578925 hasConceptScore W3216578925C42003148 @default.
- W3216578925 hasConceptScore W3216578925C43486711 @default.
- W3216578925 hasConceptScore W3216578925C48921125 @default.
- W3216578925 hasConceptScore W3216578925C66938386 @default.
- W3216578925 hasConceptScore W3216578925C76155785 @default.
- W3216578925 hasConceptScore W3216578925C98045186 @default.
- W3216578925 hasFunder F4320311776 @default.
- W3216578925 hasLocation W32165789251 @default.
- W3216578925 hasOpenAccess W3216578925 @default.
- W3216578925 hasPrimaryLocation W32165789251 @default.