Matches in SemOpenAlex for { <https://semopenalex.org/work/W3216579506> ?p ?o ?g. }
- W3216579506 endingPage "A110" @default.
- W3216579506 startingPage "A110" @default.
- W3216579506 abstract "Context. Point source (PS) detection is an important issue for future cosmic microwave background (CMB) experiments since they are one of the main contaminants to the recovery of CMB signal on small scales. Improving its multi-frequency detection would allow us to take into account valuable information otherwise neglected when extracting PS using a channel-by-channel approach. Aims. We aim to develop an artificial intelligence method based on fully convolutional neural networks to detect PS in multi-frequency realistic simulations and compare its performance against one of the most popular multi-frequency PS detection methods, the matrix filters. The frequencies used in our analysis are 143, 217, and 353 GHz, and we imposed a Galactic cut of 30°. Methods. We produced multi-frequency realistic simulations of the sky by adding contaminating signals to the PS maps as the CMB, the cosmic infrared background, the Galactic thermal emission, the thermal Sunyaev-Zel’dovich effect, and the instrumental and PS shot noises. These simulations were used to train two neural networks called flat and spectral MultiPoSeIDoNs. The first one considers PS with a flat spectrum, and the second one is more realistic and general because it takes into account the spectral behaviour of the PS. Then, we compared the performance on reliability, completeness, and flux density estimation accuracy for both MultiPoSeIDoNs and the matrix filters. Results. Using a flux detection limit of 60 mJy, MultiPoSeIDoN successfully recovered PS reaching the 90% completeness level at 58 mJy for the flat case, and at 79, 71, and 60 mJy for the spectral case at 143, 217, and 353 GHz, respectively. The matrix filters reach the 90% completeness level at 84, 79, and 123 mJy. To reduce the number of spurious sources, we used a safer 4 σ flux density detection limit for the matrix filters, the same as was used in the Planck catalogues, obtaining the 90% of completeness level at 113, 92, and 398 mJy. In all cases, MultiPoSeIDoN obtains a much lower number of spurious sources with respect to the filtering method. The recovering of the flux density of the detections, attending to the results on photometry, is better for the neural networks, which have a relative error of 10% above 100 mJy for the three frequencies, while the filter obtains a 10% relative error above 150 mJy for 143 and 217 GHz, and above 200 mJy for 353 GHz. Conclusions. Based on the results, neural networks are the perfect candidates to substitute filtering methods to detect multi-frequency PS in future CMB experiments. Moreover, we show that a multi-frequency approach can detect sources with higher accuracy than single-frequency approaches also based on neural networks." @default.
- W3216579506 created "2021-12-06" @default.
- W3216579506 creator A5004381931 @default.
- W3216579506 creator A5004432763 @default.
- W3216579506 creator A5006484385 @default.
- W3216579506 creator A5010274077 @default.
- W3216579506 creator A5024932406 @default.
- W3216579506 creator A5028314546 @default.
- W3216579506 creator A5042132634 @default.
- W3216579506 creator A5054666484 @default.
- W3216579506 creator A5055298938 @default.
- W3216579506 creator A5058965809 @default.
- W3216579506 creator A5067929455 @default.
- W3216579506 date "2022-02-01" @default.
- W3216579506 modified "2023-10-16" @default.
- W3216579506 title "Multi-frequency point source detection with fully convolutional networks: Performance in realistic microwave sky simulations" @default.
- W3216579506 cites W1480376833 @default.
- W3216579506 cites W1498436455 @default.
- W3216579506 cites W1647593176 @default.
- W3216579506 cites W1929426853 @default.
- W3216579506 cites W1931011441 @default.
- W3216579506 cites W1964108953 @default.
- W3216579506 cites W1965170215 @default.
- W3216579506 cites W1976579441 @default.
- W3216579506 cites W1990402077 @default.
- W3216579506 cites W1995900927 @default.
- W3216579506 cites W2009797711 @default.
- W3216579506 cites W2011301426 @default.
- W3216579506 cites W2017675823 @default.
- W3216579506 cites W2034096207 @default.
- W3216579506 cites W2037629290 @default.
- W3216579506 cites W2040127547 @default.
- W3216579506 cites W2043721767 @default.
- W3216579506 cites W2049184973 @default.
- W3216579506 cites W2060505741 @default.
- W3216579506 cites W2061939373 @default.
- W3216579506 cites W2066894533 @default.
- W3216579506 cites W2066945737 @default.
- W3216579506 cites W2080382149 @default.
- W3216579506 cites W2084377030 @default.
- W3216579506 cites W2086055384 @default.
- W3216579506 cites W2093671563 @default.
- W3216579506 cites W2096624375 @default.
- W3216579506 cites W2116440023 @default.
- W3216579506 cites W2117683788 @default.
- W3216579506 cites W2118059901 @default.
- W3216579506 cites W2129153205 @default.
- W3216579506 cites W2147800946 @default.
- W3216579506 cites W2149476548 @default.
- W3216579506 cites W2156289775 @default.
- W3216579506 cites W2156707496 @default.
- W3216579506 cites W2161023838 @default.
- W3216579506 cites W2161964152 @default.
- W3216579506 cites W2515239931 @default.
- W3216579506 cites W2592512793 @default.
- W3216579506 cites W2593003715 @default.
- W3216579506 cites W2750586355 @default.
- W3216579506 cites W2767526854 @default.
- W3216579506 cites W2888259247 @default.
- W3216579506 cites W2900466252 @default.
- W3216579506 cites W2919115771 @default.
- W3216579506 cites W2922580882 @default.
- W3216579506 cites W2948489233 @default.
- W3216579506 cites W2950688433 @default.
- W3216579506 cites W2996373516 @default.
- W3216579506 cites W3085188652 @default.
- W3216579506 cites W3098003348 @default.
- W3216579506 cites W3098724574 @default.
- W3216579506 cites W3098899650 @default.
- W3216579506 cites W3099158584 @default.
- W3216579506 cites W3099248682 @default.
- W3216579506 cites W3099445393 @default.
- W3216579506 cites W3102290135 @default.
- W3216579506 cites W3103920220 @default.
- W3216579506 cites W3104807016 @default.
- W3216579506 cites W3106149202 @default.
- W3216579506 cites W3114624360 @default.
- W3216579506 cites W3122112131 @default.
- W3216579506 cites W3123836592 @default.
- W3216579506 cites W3128814456 @default.
- W3216579506 cites W3173738540 @default.
- W3216579506 cites W4288076070 @default.
- W3216579506 cites W4289310010 @default.
- W3216579506 cites W4291186180 @default.
- W3216579506 doi "https://doi.org/10.1051/0004-6361/202141874" @default.
- W3216579506 hasPublicationYear "2022" @default.
- W3216579506 type Work @default.
- W3216579506 sameAs 3216579506 @default.
- W3216579506 citedByCount "2" @default.
- W3216579506 countsByYear W32165795062022 @default.
- W3216579506 countsByYear W32165795062023 @default.
- W3216579506 crossrefType "journal-article" @default.
- W3216579506 hasAuthorship W3216579506A5004381931 @default.
- W3216579506 hasAuthorship W3216579506A5004432763 @default.
- W3216579506 hasAuthorship W3216579506A5006484385 @default.
- W3216579506 hasAuthorship W3216579506A5010274077 @default.
- W3216579506 hasAuthorship W3216579506A5024932406 @default.
- W3216579506 hasAuthorship W3216579506A5028314546 @default.