Matches in SemOpenAlex for { <https://semopenalex.org/work/W3216587059> ?p ?o ?g. }
- W3216587059 endingPage "4844" @default.
- W3216587059 startingPage "4844" @default.
- W3216587059 abstract "A record-breaking agglomeration of Sargassum was packed along the northern Jeju coast in Korea in 2021, and laborers suffered from removing them from the beach. If remote sensing can be used to detect the locations at which Sargassum accumulated in a timely and accurate manner, we could remove them before their arrival and reduce the damage caused by Sargassum. This study aims to detect Sargassum distribution on the coast of Jeju Island using the Geostationary KOMPSAT 2B (GK2B) Geostationary Ocean Color Imager-II (GOCI-II) imagery that was launched in February 2020, with measurements available since October 2020. For this, we used GOCI-II imagery during the first 6 months and machine learning models including Fine Tree, a Fine Gaussian support vector machine (SVM), and Gentle adaptive boosting (GentleBoost). We trained the models with the GOCI-II Rayleigh-corrected reflectance (RhoC) image and a ground truth map extracted from high-resolution images as input and output, respectively. Qualitative and quantitative assessments were carried out using the three machine learning models and traditional methods such as Sargassum indexes. We found that GentleBoost showed a lower false positive (6.2%) and a high F-measure level (0.82), and a more appropriate Sargassum distribution compared to other methods. The application of the machine learning model to GOCI-II images in various atmospheric conditions is therefore considered successful for mapping Sargassum extent quickly, enabling reduction of laborers’ efforts to remove them." @default.
- W3216587059 created "2021-12-06" @default.
- W3216587059 creator A5001114153 @default.
- W3216587059 creator A5010232155 @default.
- W3216587059 creator A5033653599 @default.
- W3216587059 creator A5038234489 @default.
- W3216587059 creator A5038516228 @default.
- W3216587059 creator A5085465030 @default.
- W3216587059 date "2021-11-29" @default.
- W3216587059 modified "2023-10-05" @default.
- W3216587059 title "Sargassum Detection Using Machine Learning Models: A Case Study with the First 6 Months of GOCI-II Imagery" @default.
- W3216587059 cites W1494846899 @default.
- W3216587059 cites W1534069305 @default.
- W3216587059 cites W1605688901 @default.
- W3216587059 cites W1920679131 @default.
- W3216587059 cites W1964668496 @default.
- W3216587059 cites W1985555755 @default.
- W3216587059 cites W1997489095 @default.
- W3216587059 cites W1998580401 @default.
- W3216587059 cites W2012116092 @default.
- W3216587059 cites W2012210411 @default.
- W3216587059 cites W2013712039 @default.
- W3216587059 cites W2023001185 @default.
- W3216587059 cites W2024046085 @default.
- W3216587059 cites W2029943649 @default.
- W3216587059 cites W2082714424 @default.
- W3216587059 cites W2101972284 @default.
- W3216587059 cites W2135506144 @default.
- W3216587059 cites W2136758825 @default.
- W3216587059 cites W2142891776 @default.
- W3216587059 cites W2301042755 @default.
- W3216587059 cites W2467306443 @default.
- W3216587059 cites W2515372380 @default.
- W3216587059 cites W2749368893 @default.
- W3216587059 cites W2766402529 @default.
- W3216587059 cites W2767547957 @default.
- W3216587059 cites W2789322733 @default.
- W3216587059 cites W2790477900 @default.
- W3216587059 cites W2883640872 @default.
- W3216587059 cites W2891213852 @default.
- W3216587059 cites W2895359416 @default.
- W3216587059 cites W2900355025 @default.
- W3216587059 cites W2905802433 @default.
- W3216587059 cites W2946371564 @default.
- W3216587059 cites W2955234199 @default.
- W3216587059 cites W2971609592 @default.
- W3216587059 cites W2971632090 @default.
- W3216587059 cites W2972025301 @default.
- W3216587059 cites W2972802459 @default.
- W3216587059 cites W3003984144 @default.
- W3216587059 cites W3037870660 @default.
- W3216587059 cites W3105514422 @default.
- W3216587059 cites W3110859022 @default.
- W3216587059 cites W3135096328 @default.
- W3216587059 cites W3174853447 @default.
- W3216587059 doi "https://doi.org/10.3390/rs13234844" @default.
- W3216587059 hasPublicationYear "2021" @default.
- W3216587059 type Work @default.
- W3216587059 sameAs 3216587059 @default.
- W3216587059 citedByCount "14" @default.
- W3216587059 countsByYear W32165870592022 @default.
- W3216587059 countsByYear W32165870592023 @default.
- W3216587059 crossrefType "journal-article" @default.
- W3216587059 hasAuthorship W3216587059A5001114153 @default.
- W3216587059 hasAuthorship W3216587059A5010232155 @default.
- W3216587059 hasAuthorship W3216587059A5033653599 @default.
- W3216587059 hasAuthorship W3216587059A5038234489 @default.
- W3216587059 hasAuthorship W3216587059A5038516228 @default.
- W3216587059 hasAuthorship W3216587059A5085465030 @default.
- W3216587059 hasBestOaLocation W32165870591 @default.
- W3216587059 hasConcept C121332964 @default.
- W3216587059 hasConcept C12267149 @default.
- W3216587059 hasConcept C127313418 @default.
- W3216587059 hasConcept C1276947 @default.
- W3216587059 hasConcept C146849305 @default.
- W3216587059 hasConcept C154945302 @default.
- W3216587059 hasConcept C16405173 @default.
- W3216587059 hasConcept C19269812 @default.
- W3216587059 hasConcept C2778760044 @default.
- W3216587059 hasConcept C39432304 @default.
- W3216587059 hasConcept C41008148 @default.
- W3216587059 hasConcept C559758991 @default.
- W3216587059 hasConcept C59822182 @default.
- W3216587059 hasConcept C62649853 @default.
- W3216587059 hasConcept C86803240 @default.
- W3216587059 hasConceptScore W3216587059C121332964 @default.
- W3216587059 hasConceptScore W3216587059C12267149 @default.
- W3216587059 hasConceptScore W3216587059C127313418 @default.
- W3216587059 hasConceptScore W3216587059C1276947 @default.
- W3216587059 hasConceptScore W3216587059C146849305 @default.
- W3216587059 hasConceptScore W3216587059C154945302 @default.
- W3216587059 hasConceptScore W3216587059C16405173 @default.
- W3216587059 hasConceptScore W3216587059C19269812 @default.
- W3216587059 hasConceptScore W3216587059C2778760044 @default.
- W3216587059 hasConceptScore W3216587059C39432304 @default.
- W3216587059 hasConceptScore W3216587059C41008148 @default.
- W3216587059 hasConceptScore W3216587059C559758991 @default.
- W3216587059 hasConceptScore W3216587059C59822182 @default.